![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptmpoopabovd | Structured version Visualization version GIF version |
Description: The operation value of a function value of a collection of ordered pairs of related elements. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable condition on 𝐷, 𝑓, ℎ to remove hypotheses. (Revised by SN, 13-Dec-2024.) |
Ref | Expression |
---|---|
mptmpoopabbrd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
mptmpoopabbrd.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) |
mptmpoopabbrd.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) |
mptmpoopabovd.m | ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ∧ 𝑓(𝐷‘𝑔)ℎ)})) |
Ref | Expression |
---|---|
mptmpoopabovd | ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptmpoopabbrd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
2 | mptmpoopabbrd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) | |
3 | mptmpoopabbrd.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) | |
4 | oveq12 7439 | . . 3 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝑎(𝐶‘𝐺)𝑏) = (𝑋(𝐶‘𝐺)𝑌)) | |
5 | 4 | breqd 5158 | . 2 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝑓(𝑎(𝐶‘𝐺)𝑏)ℎ ↔ 𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ)) |
6 | fveq2 6906 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝐶‘𝑔) = (𝐶‘𝐺)) | |
7 | 6 | oveqd 7447 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑎(𝐶‘𝑔)𝑏) = (𝑎(𝐶‘𝐺)𝑏)) |
8 | 7 | breqd 5158 | . 2 ⊢ (𝑔 = 𝐺 → (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ↔ 𝑓(𝑎(𝐶‘𝐺)𝑏)ℎ)) |
9 | mptmpoopabovd.m | . 2 ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ∧ 𝑓(𝐷‘𝑔)ℎ)})) | |
10 | 1, 2, 3, 5, 8, 9 | mptmpoopabbrd 8103 | 1 ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 class class class wbr 5147 {copab 5209 ↦ cmpt 5230 ‘cfv 6562 (class class class)co 7430 ∈ cmpo 7432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 |
This theorem is referenced by: wksonproplem 29736 trlsonfval 29738 pthsonfval 29772 spthson 29773 |
Copyright terms: Public domain | W3C validator |