MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptmpoopabovd Structured version   Visualization version   GIF version

Theorem mptmpoopabovd 8024
Description: The operation value of a function value of a collection of ordered pairs of related elements. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable condition on 𝐷, 𝑓, to remove hypotheses. (Revised by SN, 13-Dec-2024.)
Hypotheses
Ref Expression
mptmpoopabbrd.g (𝜑𝐺𝑊)
mptmpoopabbrd.x (𝜑𝑋 ∈ (𝐴𝐺))
mptmpoopabbrd.y (𝜑𝑌 ∈ (𝐵𝐺))
mptmpoopabovd.m 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝐷𝑔))}))
Assertion
Ref Expression
mptmpoopabovd (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝑓(𝑋(𝐶𝐺)𝑌)𝑓(𝐷𝐺))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑔   𝐵,𝑎,𝑏,𝑔   𝐷,𝑎,𝑏,𝑓,𝑔,   𝐺,𝑎,𝑏,𝑓,𝑔,   𝑔,𝑊   𝑋,𝑎,𝑏,𝑓,𝑔,   𝑌,𝑎,𝑏,𝑓,𝑔,   𝜑,𝑓,   𝐶,𝑎,𝑏,𝑔
Allowed substitution hints:   𝜑(𝑔,𝑎,𝑏)   𝐴(𝑓,)   𝐵(𝑓,)   𝐶(𝑓,)   𝑀(𝑓,𝑔,,𝑎,𝑏)   𝑊(𝑓,,𝑎,𝑏)

Proof of Theorem mptmpoopabovd
StepHypRef Expression
1 mptmpoopabbrd.g . 2 (𝜑𝐺𝑊)
2 mptmpoopabbrd.x . 2 (𝜑𝑋 ∈ (𝐴𝐺))
3 mptmpoopabbrd.y . 2 (𝜑𝑌 ∈ (𝐵𝐺))
4 oveq12 7362 . . 3 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝑎(𝐶𝐺)𝑏) = (𝑋(𝐶𝐺)𝑌))
54breqd 5106 . 2 ((𝑎 = 𝑋𝑏 = 𝑌) → (𝑓(𝑎(𝐶𝐺)𝑏)𝑓(𝑋(𝐶𝐺)𝑌)))
6 fveq2 6826 . . . 4 (𝑔 = 𝐺 → (𝐶𝑔) = (𝐶𝐺))
76oveqd 7370 . . 3 (𝑔 = 𝐺 → (𝑎(𝐶𝑔)𝑏) = (𝑎(𝐶𝐺)𝑏))
87breqd 5106 . 2 (𝑔 = 𝐺 → (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝑎(𝐶𝐺)𝑏)))
9 mptmpoopabovd.m . 2 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴𝑔), 𝑏 ∈ (𝐵𝑔) ↦ {⟨𝑓, ⟩ ∣ (𝑓(𝑎(𝐶𝑔)𝑏)𝑓(𝐷𝑔))}))
101, 2, 3, 5, 8, 9mptmpoopabbrd 8022 1 (𝜑 → (𝑋(𝑀𝐺)𝑌) = {⟨𝑓, ⟩ ∣ (𝑓(𝑋(𝐶𝐺)𝑌)𝑓(𝐷𝐺))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438   class class class wbr 5095  {copab 5157  cmpt 5176  cfv 6486  (class class class)co 7353  cmpo 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932
This theorem is referenced by:  wksonproplem  29666  trlsonfval  29667  pthsonfval  29703  spthson  29704
  Copyright terms: Public domain W3C validator