| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptmpoopabovd | Structured version Visualization version GIF version | ||
| Description: The operation value of a function value of a collection of ordered pairs of related elements. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable condition on 𝐷, 𝑓, ℎ to remove hypotheses. (Revised by SN, 13-Dec-2024.) |
| Ref | Expression |
|---|---|
| mptmpoopabbrd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| mptmpoopabbrd.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) |
| mptmpoopabbrd.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) |
| mptmpoopabovd.m | ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ∧ 𝑓(𝐷‘𝑔)ℎ)})) |
| Ref | Expression |
|---|---|
| mptmpoopabovd | ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptmpoopabbrd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 2 | mptmpoopabbrd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) | |
| 3 | mptmpoopabbrd.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) | |
| 4 | oveq12 7440 | . . 3 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝑎(𝐶‘𝐺)𝑏) = (𝑋(𝐶‘𝐺)𝑌)) | |
| 5 | 4 | breqd 5154 | . 2 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝑓(𝑎(𝐶‘𝐺)𝑏)ℎ ↔ 𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ)) |
| 6 | fveq2 6906 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝐶‘𝑔) = (𝐶‘𝐺)) | |
| 7 | 6 | oveqd 7448 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑎(𝐶‘𝑔)𝑏) = (𝑎(𝐶‘𝐺)𝑏)) |
| 8 | 7 | breqd 5154 | . 2 ⊢ (𝑔 = 𝐺 → (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ↔ 𝑓(𝑎(𝐶‘𝐺)𝑏)ℎ)) |
| 9 | mptmpoopabovd.m | . 2 ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ∧ 𝑓(𝐷‘𝑔)ℎ)})) | |
| 10 | 1, 2, 3, 5, 8, 9 | mptmpoopabbrd 8105 | 1 ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 {copab 5205 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 |
| This theorem is referenced by: wksonproplem 29722 trlsonfval 29724 pthsonfval 29760 spthson 29761 |
| Copyright terms: Public domain | W3C validator |