| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptmpoopabovd | Structured version Visualization version GIF version | ||
| Description: The operation value of a function value of a collection of ordered pairs of related elements. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) Add disjoint variable condition on 𝐷, 𝑓, ℎ to remove hypotheses. (Revised by SN, 13-Dec-2024.) |
| Ref | Expression |
|---|---|
| mptmpoopabbrd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| mptmpoopabbrd.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) |
| mptmpoopabbrd.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) |
| mptmpoopabovd.m | ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ∧ 𝑓(𝐷‘𝑔)ℎ)})) |
| Ref | Expression |
|---|---|
| mptmpoopabovd | ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptmpoopabbrd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 2 | mptmpoopabbrd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) | |
| 3 | mptmpoopabbrd.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) | |
| 4 | oveq12 7412 | . . 3 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝑎(𝐶‘𝐺)𝑏) = (𝑋(𝐶‘𝐺)𝑌)) | |
| 5 | 4 | breqd 5130 | . 2 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝑓(𝑎(𝐶‘𝐺)𝑏)ℎ ↔ 𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ)) |
| 6 | fveq2 6875 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝐶‘𝑔) = (𝐶‘𝐺)) | |
| 7 | 6 | oveqd 7420 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑎(𝐶‘𝑔)𝑏) = (𝑎(𝐶‘𝐺)𝑏)) |
| 8 | 7 | breqd 5130 | . 2 ⊢ (𝑔 = 𝐺 → (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ↔ 𝑓(𝑎(𝐶‘𝐺)𝑏)ℎ)) |
| 9 | mptmpoopabovd.m | . 2 ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ∧ 𝑓(𝐷‘𝑔)ℎ)})) | |
| 10 | 1, 2, 3, 5, 8, 9 | mptmpoopabbrd 8077 | 1 ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ ∧ 𝑓(𝐷‘𝐺)ℎ)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 {copab 5181 ↦ cmpt 5201 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 |
| This theorem is referenced by: wksonproplem 29630 trlsonfval 29632 pthsonfval 29668 spthson 29669 |
| Copyright terms: Public domain | W3C validator |