![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istrlson | Structured version Visualization version GIF version |
Description: Properties of a pair of functions to be a trail between two given vertices. (Contributed by Alexander van der Vekens, 3-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
Ref | Expression |
---|---|
trlsonfval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
istrlson | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsonfval.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | trlsonfval 29742 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(TrailsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Trails‘𝐺)𝑝)}) |
3 | 2 | breqd 5177 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ 𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Trails‘𝐺)𝑝)}𝑃)) |
4 | breq12 5171 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝 ↔ 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃)) | |
5 | breq12 5171 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓(Trails‘𝐺)𝑝 ↔ 𝐹(Trails‘𝐺)𝑃)) | |
6 | 4, 5 | anbi12d 631 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Trails‘𝐺)𝑝) ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
7 | eqid 2740 | . . 3 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Trails‘𝐺)𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Trails‘𝐺)𝑝)} | |
8 | 6, 7 | brabga 5553 | . 2 ⊢ ((𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹{〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Trails‘𝐺)𝑝)}𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
9 | 3, 8 | sylan9bb 509 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 {copab 5228 ‘cfv 6573 (class class class)co 7448 Vtxcvtx 29031 WalksOncwlkson 29633 Trailsctrls 29726 TrailsOnctrlson 29727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-trlson 29729 |
This theorem is referenced by: trlsonprop 29744 trlontrl 29747 isspthonpth 29785 spthonepeq 29788 2trlond 29972 0trlon 30156 1pthond 30176 3trlond 30205 |
Copyright terms: Public domain | W3C validator |