MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrlson Structured version   Visualization version   GIF version

Theorem istrlson 29743
Description: Properties of a pair of functions to be a trail between two given vertices. (Contributed by Alexander van der Vekens, 3-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 21-Mar-2021.)
Hypothesis
Ref Expression
trlsonfval.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
istrlson (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))

Proof of Theorem istrlson
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlsonfval.v . . . 4 𝑉 = (Vtx‘𝐺)
21trlsonfval 29742 . . 3 ((𝐴𝑉𝐵𝑉) → (𝐴(TrailsOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝)})
32breqd 5177 . 2 ((𝐴𝑉𝐵𝑉) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝)}𝑃))
4 breq12 5171 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃))
5 breq12 5171 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓(Trails‘𝐺)𝑝𝐹(Trails‘𝐺)𝑃))
64, 5anbi12d 631 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝) ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
7 eqid 2740 . . 3 {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝)}
86, 7brabga 5553 . 2 ((𝐹𝑈𝑃𝑍) → (𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝)}𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
93, 8sylan9bb 509 1 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  {copab 5228  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  WalksOncwlkson 29633  Trailsctrls 29726  TrailsOnctrlson 29727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-trlson 29729
This theorem is referenced by:  trlsonprop  29744  trlontrl  29747  isspthonpth  29785  spthonepeq  29788  2trlond  29972  0trlon  30156  1pthond  30176  3trlond  30205
  Copyright terms: Public domain W3C validator