MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrlson Structured version   Visualization version   GIF version

Theorem istrlson 29635
Description: Properties of a pair of functions to be a trail between two given vertices. (Contributed by Alexander van der Vekens, 3-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 21-Mar-2021.)
Hypothesis
Ref Expression
trlsonfval.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
istrlson (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))

Proof of Theorem istrlson
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlsonfval.v . . . 4 𝑉 = (Vtx‘𝐺)
21trlsonfval 29634 . . 3 ((𝐴𝑉𝐵𝑉) → (𝐴(TrailsOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝)})
32breqd 5118 . 2 ((𝐴𝑉𝐵𝑉) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝)}𝑃))
4 breq12 5112 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃))
5 breq12 5112 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓(Trails‘𝐺)𝑝𝐹(Trails‘𝐺)𝑃))
64, 5anbi12d 632 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝) ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
7 eqid 2729 . . 3 {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝)}
86, 7brabga 5494 . 2 ((𝐹𝑈𝑃𝑍) → (𝐹{⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝)}𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
93, 8sylan9bb 509 1 (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  {copab 5169  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  WalksOncwlkson 29525  Trailsctrls 29618  TrailsOnctrlson 29619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-trlson 29621
This theorem is referenced by:  trlsonprop  29636  trlontrl  29639  isspthonpth  29679  spthonepeq  29682  2trlond  29869  0trlon  30053  1pthond  30073  3trlond  30102
  Copyright terms: Public domain W3C validator