|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ufilss | Structured version Visualization version GIF version | ||
| Description: For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) | 
| Ref | Expression | 
|---|---|
| ufilss | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elfvdm 6943 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝑋 ∈ dom UFil) | |
| 2 | elpw2g 5333 | . . . 4 ⊢ (𝑋 ∈ dom UFil → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | 
| 4 | isufil 23911 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) | |
| 5 | eleq1 2829 | . . . . . 6 ⊢ (𝑥 = 𝑆 → (𝑥 ∈ 𝐹 ↔ 𝑆 ∈ 𝐹)) | |
| 6 | difeq2 4120 | . . . . . . 7 ⊢ (𝑥 = 𝑆 → (𝑋 ∖ 𝑥) = (𝑋 ∖ 𝑆)) | |
| 7 | 6 | eleq1d 2826 | . . . . . 6 ⊢ (𝑥 = 𝑆 → ((𝑋 ∖ 𝑥) ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) | 
| 8 | 5, 7 | orbi12d 919 | . . . . 5 ⊢ (𝑥 = 𝑆 → ((𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹) ↔ (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) | 
| 9 | 8 | rspccv 3619 | . . . 4 ⊢ (∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹) → (𝑆 ∈ 𝒫 𝑋 → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) | 
| 10 | 4, 9 | simplbiim 504 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑆 ∈ 𝒫 𝑋 → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) | 
| 11 | 3, 10 | sylbird 260 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑆 ⊆ 𝑋 → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) | 
| 12 | 11 | imp 406 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∖ cdif 3948 ⊆ wss 3951 𝒫 cpw 4600 dom cdm 5685 ‘cfv 6561 Filcfil 23853 UFilcufil 23907 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 df-ufil 23909 | 
| This theorem is referenced by: ufilb 23914 trufil 23918 ufildr 23939 | 
| Copyright terms: Public domain | W3C validator |