![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ufilss | Structured version Visualization version GIF version |
Description: For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
Ref | Expression |
---|---|
ufilss | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6928 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝑋 ∈ dom UFil) | |
2 | elpw2g 5344 | . . . 4 ⊢ (𝑋 ∈ dom UFil → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
4 | isufil 23727 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) | |
5 | eleq1 2820 | . . . . . 6 ⊢ (𝑥 = 𝑆 → (𝑥 ∈ 𝐹 ↔ 𝑆 ∈ 𝐹)) | |
6 | difeq2 4116 | . . . . . . 7 ⊢ (𝑥 = 𝑆 → (𝑋 ∖ 𝑥) = (𝑋 ∖ 𝑆)) | |
7 | 6 | eleq1d 2817 | . . . . . 6 ⊢ (𝑥 = 𝑆 → ((𝑋 ∖ 𝑥) ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
8 | 5, 7 | orbi12d 916 | . . . . 5 ⊢ (𝑥 = 𝑆 → ((𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹) ↔ (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) |
9 | 8 | rspccv 3609 | . . . 4 ⊢ (∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹) → (𝑆 ∈ 𝒫 𝑋 → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) |
10 | 4, 9 | simplbiim 504 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑆 ∈ 𝒫 𝑋 → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) |
11 | 3, 10 | sylbird 260 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑆 ⊆ 𝑋 → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) |
12 | 11 | imp 406 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∖ cdif 3945 ⊆ wss 3948 𝒫 cpw 4602 dom cdm 5676 ‘cfv 6543 Filcfil 23669 UFilcufil 23723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ufil 23725 |
This theorem is referenced by: ufilb 23730 trufil 23734 ufildr 23755 |
Copyright terms: Public domain | W3C validator |