MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilss Structured version   Visualization version   GIF version

Theorem ufilss 23729
Description: For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilss ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐹 ∨ (𝑋𝑆) ∈ 𝐹))

Proof of Theorem ufilss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6928 . . . 4 (𝐹 ∈ (UFil‘𝑋) → 𝑋 ∈ dom UFil)
2 elpw2g 5344 . . . 4 (𝑋 ∈ dom UFil → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
31, 2syl 17 . . 3 (𝐹 ∈ (UFil‘𝑋) → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
4 isufil 23727 . . . 4 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
5 eleq1 2820 . . . . . 6 (𝑥 = 𝑆 → (𝑥𝐹𝑆𝐹))
6 difeq2 4116 . . . . . . 7 (𝑥 = 𝑆 → (𝑋𝑥) = (𝑋𝑆))
76eleq1d 2817 . . . . . 6 (𝑥 = 𝑆 → ((𝑋𝑥) ∈ 𝐹 ↔ (𝑋𝑆) ∈ 𝐹))
85, 7orbi12d 916 . . . . 5 (𝑥 = 𝑆 → ((𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹) ↔ (𝑆𝐹 ∨ (𝑋𝑆) ∈ 𝐹)))
98rspccv 3609 . . . 4 (∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹) → (𝑆 ∈ 𝒫 𝑋 → (𝑆𝐹 ∨ (𝑋𝑆) ∈ 𝐹)))
104, 9simplbiim 504 . . 3 (𝐹 ∈ (UFil‘𝑋) → (𝑆 ∈ 𝒫 𝑋 → (𝑆𝐹 ∨ (𝑋𝑆) ∈ 𝐹)))
113, 10sylbird 260 . 2 (𝐹 ∈ (UFil‘𝑋) → (𝑆𝑋 → (𝑆𝐹 ∨ (𝑋𝑆) ∈ 𝐹)))
1211imp 406 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐹 ∨ (𝑋𝑆) ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  wral 3060  cdif 3945  wss 3948  𝒫 cpw 4602  dom cdm 5676  cfv 6543  Filcfil 23669  UFilcufil 23723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ufil 23725
This theorem is referenced by:  ufilb  23730  trufil  23734  ufildr  23755
  Copyright terms: Public domain W3C validator