Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ufilss | Structured version Visualization version GIF version |
Description: For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
Ref | Expression |
---|---|
ufilss | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6806 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝑋 ∈ dom UFil) | |
2 | elpw2g 5268 | . . . 4 ⊢ (𝑋 ∈ dom UFil → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
4 | isufil 23054 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) | |
5 | eleq1 2826 | . . . . . 6 ⊢ (𝑥 = 𝑆 → (𝑥 ∈ 𝐹 ↔ 𝑆 ∈ 𝐹)) | |
6 | difeq2 4051 | . . . . . . 7 ⊢ (𝑥 = 𝑆 → (𝑋 ∖ 𝑥) = (𝑋 ∖ 𝑆)) | |
7 | 6 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = 𝑆 → ((𝑋 ∖ 𝑥) ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
8 | 5, 7 | orbi12d 916 | . . . . 5 ⊢ (𝑥 = 𝑆 → ((𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹) ↔ (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) |
9 | 8 | rspccv 3558 | . . . 4 ⊢ (∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹) → (𝑆 ∈ 𝒫 𝑋 → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) |
10 | 4, 9 | simplbiim 505 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑆 ∈ 𝒫 𝑋 → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) |
11 | 3, 10 | sylbird 259 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑆 ⊆ 𝑋 → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) |
12 | 11 | imp 407 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∖ cdif 3884 ⊆ wss 3887 𝒫 cpw 4533 dom cdm 5589 ‘cfv 6433 Filcfil 22996 UFilcufil 23050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ufil 23052 |
This theorem is referenced by: ufilb 23057 trufil 23061 ufildr 23082 |
Copyright terms: Public domain | W3C validator |