![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ufilss | Structured version Visualization version GIF version |
Description: For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
Ref | Expression |
---|---|
ufilss | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6944 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝑋 ∈ dom UFil) | |
2 | elpw2g 5339 | . . . 4 ⊢ (𝑋 ∈ dom UFil → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
4 | isufil 23927 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) | |
5 | eleq1 2827 | . . . . . 6 ⊢ (𝑥 = 𝑆 → (𝑥 ∈ 𝐹 ↔ 𝑆 ∈ 𝐹)) | |
6 | difeq2 4130 | . . . . . . 7 ⊢ (𝑥 = 𝑆 → (𝑋 ∖ 𝑥) = (𝑋 ∖ 𝑆)) | |
7 | 6 | eleq1d 2824 | . . . . . 6 ⊢ (𝑥 = 𝑆 → ((𝑋 ∖ 𝑥) ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
8 | 5, 7 | orbi12d 918 | . . . . 5 ⊢ (𝑥 = 𝑆 → ((𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹) ↔ (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) |
9 | 8 | rspccv 3619 | . . . 4 ⊢ (∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹) → (𝑆 ∈ 𝒫 𝑋 → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) |
10 | 4, 9 | simplbiim 504 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑆 ∈ 𝒫 𝑋 → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) |
11 | 3, 10 | sylbird 260 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑆 ⊆ 𝑋 → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹))) |
12 | 11 | imp 406 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∖ cdif 3960 ⊆ wss 3963 𝒫 cpw 4605 dom cdm 5689 ‘cfv 6563 Filcfil 23869 UFilcufil 23923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ufil 23925 |
This theorem is referenced by: ufilb 23930 trufil 23934 ufildr 23955 |
Copyright terms: Public domain | W3C validator |