![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ufilb | Structured version Visualization version GIF version |
Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013.) (Revised by Mario Carneiro, 29-Jul-2015.) |
Ref | Expression |
---|---|
ufilb | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ufilss 23629 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) | |
2 | 1 | ord 860 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 → (𝑋 ∖ 𝑆) ∈ 𝐹)) |
3 | ufilfil 23628 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
4 | filfbas 23572 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
5 | fbncp 23563 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑆 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑆) ∈ 𝐹) | |
6 | 5 | ex 411 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑆 ∈ 𝐹 → ¬ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
7 | 6 | con2d 134 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
8 | 3, 4, 7 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
9 | 8 | adantr 479 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
10 | 2, 9 | impbid 211 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2104 ∖ cdif 3944 ⊆ wss 3947 ‘cfv 6542 fBascfbas 21132 Filcfil 23569 UFilcufil 23623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fv 6550 df-fbas 21141 df-fil 23570 df-ufil 23625 |
This theorem is referenced by: ufilmax 23631 ufprim 23633 trufil 23634 ufileu 23643 cfinufil 23652 alexsublem 23768 |
Copyright terms: Public domain | W3C validator |