MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilb Structured version   Visualization version   GIF version

Theorem ufilb 23914
Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilb ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 ↔ (𝑋𝑆) ∈ 𝐹))

Proof of Theorem ufilb
StepHypRef Expression
1 ufilss 23913 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐹 ∨ (𝑋𝑆) ∈ 𝐹))
21ord 865 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 → (𝑋𝑆) ∈ 𝐹))
3 ufilfil 23912 . . . 4 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
4 filfbas 23856 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
5 fbncp 23847 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑆𝐹) → ¬ (𝑋𝑆) ∈ 𝐹)
65ex 412 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝑆𝐹 → ¬ (𝑋𝑆) ∈ 𝐹))
76con2d 134 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((𝑋𝑆) ∈ 𝐹 → ¬ 𝑆𝐹))
83, 4, 73syl 18 . . 3 (𝐹 ∈ (UFil‘𝑋) → ((𝑋𝑆) ∈ 𝐹 → ¬ 𝑆𝐹))
98adantr 480 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → ((𝑋𝑆) ∈ 𝐹 → ¬ 𝑆𝐹))
102, 9impbid 212 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 ↔ (𝑋𝑆) ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  cdif 3948  wss 3951  cfv 6561  fBascfbas 21352  Filcfil 23853  UFilcufil 23907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fv 6569  df-fbas 21361  df-fil 23854  df-ufil 23909
This theorem is referenced by:  ufilmax  23915  ufprim  23917  trufil  23918  ufileu  23927  cfinufil  23936  alexsublem  24052
  Copyright terms: Public domain W3C validator