| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ufilb | Structured version Visualization version GIF version | ||
| Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013.) (Revised by Mario Carneiro, 29-Jul-2015.) |
| Ref | Expression |
|---|---|
| ufilb | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilss 23843 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) | |
| 2 | 1 | ord 864 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 → (𝑋 ∖ 𝑆) ∈ 𝐹)) |
| 3 | ufilfil 23842 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
| 4 | filfbas 23786 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 5 | fbncp 23777 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑆 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑆) ∈ 𝐹) | |
| 6 | 5 | ex 412 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑆 ∈ 𝐹 → ¬ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
| 7 | 6 | con2d 134 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
| 8 | 3, 4, 7 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
| 10 | 2, 9 | impbid 212 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 ‘cfv 6531 fBascfbas 21303 Filcfil 23783 UFilcufil 23837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-fbas 21312 df-fil 23784 df-ufil 23839 |
| This theorem is referenced by: ufilmax 23845 ufprim 23847 trufil 23848 ufileu 23857 cfinufil 23866 alexsublem 23982 |
| Copyright terms: Public domain | W3C validator |