Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ufilb | Structured version Visualization version GIF version |
Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013.) (Revised by Mario Carneiro, 29-Jul-2015.) |
Ref | Expression |
---|---|
ufilb | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ufilss 23056 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) | |
2 | 1 | ord 861 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 → (𝑋 ∖ 𝑆) ∈ 𝐹)) |
3 | ufilfil 23055 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
4 | filfbas 22999 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
5 | fbncp 22990 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑆 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑆) ∈ 𝐹) | |
6 | 5 | ex 413 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑆 ∈ 𝐹 → ¬ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
7 | 6 | con2d 134 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
8 | 3, 4, 7 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
9 | 8 | adantr 481 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
10 | 2, 9 | impbid 211 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∖ cdif 3884 ⊆ wss 3887 ‘cfv 6433 fBascfbas 20585 Filcfil 22996 UFilcufil 23050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-fbas 20594 df-fil 22997 df-ufil 23052 |
This theorem is referenced by: ufilmax 23058 ufprim 23060 trufil 23061 ufileu 23070 cfinufil 23079 alexsublem 23195 |
Copyright terms: Public domain | W3C validator |