| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ufilb | Structured version Visualization version GIF version | ||
| Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013.) (Revised by Mario Carneiro, 29-Jul-2015.) |
| Ref | Expression |
|---|---|
| ufilb | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilss 23813 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) | |
| 2 | 1 | ord 864 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 → (𝑋 ∖ 𝑆) ∈ 𝐹)) |
| 3 | ufilfil 23812 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
| 4 | filfbas 23756 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 5 | fbncp 23747 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑆 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑆) ∈ 𝐹) | |
| 6 | 5 | ex 412 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑆 ∈ 𝐹 → ¬ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
| 7 | 6 | con2d 134 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
| 8 | 3, 4, 7 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
| 10 | 2, 9 | impbid 212 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2110 ∖ cdif 3897 ⊆ wss 3900 ‘cfv 6477 fBascfbas 21272 Filcfil 23753 UFilcufil 23807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fv 6485 df-fbas 21281 df-fil 23754 df-ufil 23809 |
| This theorem is referenced by: ufilmax 23815 ufprim 23817 trufil 23818 ufileu 23827 cfinufil 23836 alexsublem 23952 |
| Copyright terms: Public domain | W3C validator |