MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilb Structured version   Visualization version   GIF version

Theorem ufilb 23935
Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilb ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 ↔ (𝑋𝑆) ∈ 𝐹))

Proof of Theorem ufilb
StepHypRef Expression
1 ufilss 23934 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐹 ∨ (𝑋𝑆) ∈ 𝐹))
21ord 863 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 → (𝑋𝑆) ∈ 𝐹))
3 ufilfil 23933 . . . 4 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
4 filfbas 23877 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
5 fbncp 23868 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑆𝐹) → ¬ (𝑋𝑆) ∈ 𝐹)
65ex 412 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝑆𝐹 → ¬ (𝑋𝑆) ∈ 𝐹))
76con2d 134 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((𝑋𝑆) ∈ 𝐹 → ¬ 𝑆𝐹))
83, 4, 73syl 18 . . 3 (𝐹 ∈ (UFil‘𝑋) → ((𝑋𝑆) ∈ 𝐹 → ¬ 𝑆𝐹))
98adantr 480 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → ((𝑋𝑆) ∈ 𝐹 → ¬ 𝑆𝐹))
102, 9impbid 212 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 ↔ (𝑋𝑆) ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  cdif 3973  wss 3976  cfv 6573  fBascfbas 21375  Filcfil 23874  UFilcufil 23928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-fbas 21384  df-fil 23875  df-ufil 23930
This theorem is referenced by:  ufilmax  23936  ufprim  23938  trufil  23939  ufileu  23948  cfinufil  23957  alexsublem  24073
  Copyright terms: Public domain W3C validator