MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilb Structured version   Visualization version   GIF version

Theorem ufilb 23814
Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilb ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 ↔ (𝑋𝑆) ∈ 𝐹))

Proof of Theorem ufilb
StepHypRef Expression
1 ufilss 23813 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐹 ∨ (𝑋𝑆) ∈ 𝐹))
21ord 864 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 → (𝑋𝑆) ∈ 𝐹))
3 ufilfil 23812 . . . 4 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
4 filfbas 23756 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
5 fbncp 23747 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑆𝐹) → ¬ (𝑋𝑆) ∈ 𝐹)
65ex 412 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝑆𝐹 → ¬ (𝑋𝑆) ∈ 𝐹))
76con2d 134 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((𝑋𝑆) ∈ 𝐹 → ¬ 𝑆𝐹))
83, 4, 73syl 18 . . 3 (𝐹 ∈ (UFil‘𝑋) → ((𝑋𝑆) ∈ 𝐹 → ¬ 𝑆𝐹))
98adantr 480 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → ((𝑋𝑆) ∈ 𝐹 → ¬ 𝑆𝐹))
102, 9impbid 212 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 ↔ (𝑋𝑆) ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2110  cdif 3897  wss 3900  cfv 6477  fBascfbas 21272  Filcfil 23753  UFilcufil 23807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fv 6485  df-fbas 21281  df-fil 23754  df-ufil 23809
This theorem is referenced by:  ufilmax  23815  ufprim  23817  trufil  23818  ufileu  23827  cfinufil  23836  alexsublem  23952
  Copyright terms: Public domain W3C validator