MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilfil Structured version   Visualization version   GIF version

Theorem ufilfil 22036
Description: An ultrafilter is a filter. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilfil (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))

Proof of Theorem ufilfil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isufil 22035 . 2 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
21simplbi 492 1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 874  wcel 2157  wral 3089  cdif 3766  𝒫 cpw 4349  cfv 6101  Filcfil 21977  UFilcufil 22031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fv 6109  df-ufil 22033
This theorem is referenced by:  ufilb  22038  isufil2  22040  ufprim  22041  trufil  22042  ufileu  22051  filufint  22052  uffixfr  22055  uffix2  22056  uffixsn  22057  uffinfix  22059  cfinufil  22060  ufilen  22062  ufildr  22063  fmufil  22091  ufldom  22094  uffclsflim  22163  ufilcmp  22164  uffcfflf  22171  alexsublem  22176
  Copyright terms: Public domain W3C validator