Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ufilfil | Structured version Visualization version GIF version |
Description: An ultrafilter is a filter. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.) |
Ref | Expression |
---|---|
ufilfil | ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isufil 22603 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ∈ 𝐹 ∨ (𝑋 ∖ 𝑥) ∈ 𝐹))) | |
2 | 1 | simplbi 501 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 ∈ wcel 2111 ∀wral 3070 ∖ cdif 3855 𝒫 cpw 4494 ‘cfv 6335 Filcfil 22545 UFilcufil 22599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fv 6343 df-ufil 22601 |
This theorem is referenced by: ufilb 22606 isufil2 22608 ufprim 22609 trufil 22610 ufileu 22619 filufint 22620 uffixfr 22623 uffix2 22624 uffixsn 22625 uffinfix 22627 cfinufil 22628 ufilen 22630 ufildr 22631 fmufil 22659 ufldom 22662 uffclsflim 22731 ufilcmp 22732 uffcfflf 22739 alexsublem 22744 |
Copyright terms: Public domain | W3C validator |