MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilfil Structured version   Visualization version   GIF version

Theorem ufilfil 23628
Description: An ultrafilter is a filter. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilfil (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))

Proof of Theorem ufilfil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isufil 23627 . 2 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
21simplbi 498 1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845  wcel 2106  wral 3061  cdif 3945  𝒫 cpw 4602  cfv 6543  Filcfil 23569  UFilcufil 23623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ufil 23625
This theorem is referenced by:  ufilb  23630  isufil2  23632  ufprim  23633  trufil  23634  ufileu  23643  filufint  23644  uffixfr  23647  uffix2  23648  uffixsn  23649  uffinfix  23651  cfinufil  23652  ufilen  23654  ufildr  23655  fmufil  23683  ufldom  23686  uffclsflim  23755  ufilcmp  23756  uffcfflf  23763  alexsublem  23768
  Copyright terms: Public domain W3C validator