MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilfil Structured version   Visualization version   GIF version

Theorem ufilfil 23847
Description: An ultrafilter is a filter. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilfil (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))

Proof of Theorem ufilfil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isufil 23846 . 2 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
21simplbi 497 1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wcel 2109  wral 3052  cdif 3928  𝒫 cpw 4580  cfv 6536  Filcfil 23788  UFilcufil 23842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ufil 23844
This theorem is referenced by:  ufilb  23849  isufil2  23851  ufprim  23852  trufil  23853  ufileu  23862  filufint  23863  uffixfr  23866  uffix2  23867  uffixsn  23868  uffinfix  23870  cfinufil  23871  ufilen  23873  ufildr  23874  fmufil  23902  ufldom  23905  uffclsflim  23974  ufilcmp  23975  uffcfflf  23982  alexsublem  23987
  Copyright terms: Public domain W3C validator