MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilfil Structured version   Visualization version   GIF version

Theorem ufilfil 23859
Description: An ultrafilter is a filter. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilfil (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))

Proof of Theorem ufilfil
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isufil 23858 . 2 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
21simplbi 497 1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wcel 2107  wral 3050  cdif 3928  𝒫 cpw 4580  cfv 6541  Filcfil 23800  UFilcufil 23854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fv 6549  df-ufil 23856
This theorem is referenced by:  ufilb  23861  isufil2  23863  ufprim  23864  trufil  23865  ufileu  23874  filufint  23875  uffixfr  23878  uffix2  23879  uffixsn  23880  uffinfix  23882  cfinufil  23883  ufilen  23885  ufildr  23886  fmufil  23914  ufldom  23917  uffclsflim  23986  ufilcmp  23987  uffcfflf  23994  alexsublem  23999
  Copyright terms: Public domain W3C validator