![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgredg2vtxeuALT | Structured version Visualization version GIF version |
Description: Alternate proof of usgredg2vtxeu 29256, using edgiedgb 29089, the general translation from (iEdg‘𝐺) to (Edg‘𝐺). (Contributed by AV, 18-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
usgredg2vtxeuALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgruhgr 29221 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
2 | eqid 2740 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 2 | uhgredgiedgb 29161 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐸 = ((iEdg‘𝐺)‘𝑥))) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐸 = ((iEdg‘𝐺)‘𝑥))) |
5 | eqid 2740 | . . . . . . . . 9 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
6 | 5, 2 | usgredgreu 29253 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝑌 ∈ ((iEdg‘𝐺)‘𝑥)) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦}) |
7 | 6 | 3expia 1121 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) |
8 | 7 | 3adant3 1132 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐸 = ((iEdg‘𝐺)‘𝑥)) → (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) |
9 | eleq2 2833 | . . . . . . . 8 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝑌 ∈ 𝐸 ↔ 𝑌 ∈ ((iEdg‘𝐺)‘𝑥))) | |
10 | eqeq1 2744 | . . . . . . . . 9 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝐸 = {𝑌, 𝑦} ↔ ((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) | |
11 | 10 | reubidv 3406 | . . . . . . . 8 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → (∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦} ↔ ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) |
12 | 9, 11 | imbi12d 344 | . . . . . . 7 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → ((𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) ↔ (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦}))) |
13 | 12 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐸 = ((iEdg‘𝐺)‘𝑥)) → ((𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) ↔ (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦}))) |
14 | 8, 13 | mpbird 257 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐸 = ((iEdg‘𝐺)‘𝑥)) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦})) |
15 | 14 | 3exp 1119 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑥 ∈ dom (iEdg‘𝐺) → (𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦})))) |
16 | 15 | rexlimdv 3159 | . . 3 ⊢ (𝐺 ∈ USGraph → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}))) |
17 | 4, 16 | sylbid 240 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐸 ∈ (Edg‘𝐺) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}))) |
18 | 17 | 3imp 1111 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∃!wreu 3386 {cpr 4650 dom cdm 5700 ‘cfv 6573 Vtxcvtx 29031 iEdgciedg 29032 Edgcedg 29082 UHGraphcuhgr 29091 USGraphcusgr 29184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 df-edg 29083 df-uhgr 29093 df-upgr 29117 df-umgr 29118 df-uspgr 29185 df-usgr 29186 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |