![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgredg2vtxeuALT | Structured version Visualization version GIF version |
Description: Alternate proof of usgredg2vtxeu 29252, using edgiedgb 29085, the general translation from (iEdg‘𝐺) to (Edg‘𝐺). (Contributed by AV, 18-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
usgredg2vtxeuALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgruhgr 29217 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
2 | eqid 2734 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 2 | uhgredgiedgb 29157 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐸 = ((iEdg‘𝐺)‘𝑥))) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐸 = ((iEdg‘𝐺)‘𝑥))) |
5 | eqid 2734 | . . . . . . . . 9 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
6 | 5, 2 | usgredgreu 29249 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝑌 ∈ ((iEdg‘𝐺)‘𝑥)) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦}) |
7 | 6 | 3expia 1120 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) |
8 | 7 | 3adant3 1131 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐸 = ((iEdg‘𝐺)‘𝑥)) → (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) |
9 | eleq2 2827 | . . . . . . . 8 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝑌 ∈ 𝐸 ↔ 𝑌 ∈ ((iEdg‘𝐺)‘𝑥))) | |
10 | eqeq1 2738 | . . . . . . . . 9 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝐸 = {𝑌, 𝑦} ↔ ((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) | |
11 | 10 | reubidv 3395 | . . . . . . . 8 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → (∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦} ↔ ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) |
12 | 9, 11 | imbi12d 344 | . . . . . . 7 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → ((𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) ↔ (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦}))) |
13 | 12 | 3ad2ant3 1134 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐸 = ((iEdg‘𝐺)‘𝑥)) → ((𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) ↔ (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦}))) |
14 | 8, 13 | mpbird 257 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐸 = ((iEdg‘𝐺)‘𝑥)) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦})) |
15 | 14 | 3exp 1118 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑥 ∈ dom (iEdg‘𝐺) → (𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦})))) |
16 | 15 | rexlimdv 3150 | . . 3 ⊢ (𝐺 ∈ USGraph → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}))) |
17 | 4, 16 | sylbid 240 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐸 ∈ (Edg‘𝐺) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}))) |
18 | 17 | 3imp 1110 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 ∃!wreu 3375 {cpr 4632 dom cdm 5688 ‘cfv 6562 Vtxcvtx 29027 iEdgciedg 29028 Edgcedg 29078 UHGraphcuhgr 29087 USGraphcusgr 29180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-hash 14366 df-edg 29079 df-uhgr 29089 df-upgr 29113 df-umgr 29114 df-uspgr 29181 df-usgr 29182 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |