| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgredg2vtxeuALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of usgredg2vtxeu 29148, using edgiedgb 28981, the general translation from (iEdg‘𝐺) to (Edg‘𝐺). (Contributed by AV, 18-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| usgredg2vtxeuALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruhgr 29113 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 2 | uhgredgiedgb 29053 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐸 = ((iEdg‘𝐺)‘𝑥))) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝐸 = ((iEdg‘𝐺)‘𝑥))) |
| 5 | eqid 2729 | . . . . . . . . 9 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 6 | 5, 2 | usgredgreu 29145 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝑌 ∈ ((iEdg‘𝐺)‘𝑥)) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦}) |
| 7 | 6 | 3expia 1121 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) |
| 8 | 7 | 3adant3 1132 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐸 = ((iEdg‘𝐺)‘𝑥)) → (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) |
| 9 | eleq2 2817 | . . . . . . . 8 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝑌 ∈ 𝐸 ↔ 𝑌 ∈ ((iEdg‘𝐺)‘𝑥))) | |
| 10 | eqeq1 2733 | . . . . . . . . 9 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝐸 = {𝑌, 𝑦} ↔ ((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) | |
| 11 | 10 | reubidv 3372 | . . . . . . . 8 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → (∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦} ↔ ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦})) |
| 12 | 9, 11 | imbi12d 344 | . . . . . . 7 ⊢ (𝐸 = ((iEdg‘𝐺)‘𝑥) → ((𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) ↔ (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦}))) |
| 13 | 12 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐸 = ((iEdg‘𝐺)‘𝑥)) → ((𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) ↔ (𝑌 ∈ ((iEdg‘𝐺)‘𝑥) → ∃!𝑦 ∈ (Vtx‘𝐺)((iEdg‘𝐺)‘𝑥) = {𝑌, 𝑦}))) |
| 14 | 8, 13 | mpbird 257 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺) ∧ 𝐸 = ((iEdg‘𝐺)‘𝑥)) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦})) |
| 15 | 14 | 3exp 1119 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑥 ∈ dom (iEdg‘𝐺) → (𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦})))) |
| 16 | 15 | rexlimdv 3132 | . . 3 ⊢ (𝐺 ∈ USGraph → (∃𝑥 ∈ dom (iEdg‘𝐺)𝐸 = ((iEdg‘𝐺)‘𝑥) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}))) |
| 17 | 4, 16 | sylbid 240 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐸 ∈ (Edg‘𝐺) → (𝑌 ∈ 𝐸 → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}))) |
| 18 | 17 | 3imp 1110 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐸) → ∃!𝑦 ∈ (Vtx‘𝐺)𝐸 = {𝑌, 𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∃!wreu 3352 {cpr 4591 dom cdm 5638 ‘cfv 6511 Vtxcvtx 28923 iEdgciedg 28924 Edgcedg 28974 UHGraphcuhgr 28983 USGraphcusgr 29076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 df-edg 28975 df-uhgr 28985 df-upgr 29009 df-umgr 29010 df-uspgr 29077 df-usgr 29078 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |