![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr1vr | Structured version Visualization version GIF version |
Description: A simple graph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 2-Apr-2021.) |
Ref | Expression |
---|---|
usgr1vr | ⊢ ((𝐴 ∈ 𝑋 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgruhgr 28432 | . . . . 5 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
2 | 1 | adantl 482 | . . . 4 ⊢ (((𝐴 ∈ 𝑋 ∧ (Vtx‘𝐺) = {𝐴}) ∧ 𝐺 ∈ USGraph) → 𝐺 ∈ UHGraph) |
3 | fveq2 6888 | . . . . . 6 ⊢ ((Vtx‘𝐺) = {𝐴} → (♯‘(Vtx‘𝐺)) = (♯‘{𝐴})) | |
4 | hashsng 14325 | . . . . . 6 ⊢ (𝐴 ∈ 𝑋 → (♯‘{𝐴}) = 1) | |
5 | 3, 4 | sylan9eqr 2794 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ (Vtx‘𝐺) = {𝐴}) → (♯‘(Vtx‘𝐺)) = 1) |
6 | 5 | adantr 481 | . . . 4 ⊢ (((𝐴 ∈ 𝑋 ∧ (Vtx‘𝐺) = {𝐴}) ∧ 𝐺 ∈ USGraph) → (♯‘(Vtx‘𝐺)) = 1) |
7 | eqid 2732 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
8 | eqid 2732 | . . . . . . 7 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
9 | 7, 8 | usgrislfuspgr 28433 | . . . . . 6 ⊢ (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)})) |
10 | 9 | simprbi 497 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)}) |
11 | 10 | adantl 482 | . . . 4 ⊢ (((𝐴 ∈ 𝑋 ∧ (Vtx‘𝐺) = {𝐴}) ∧ 𝐺 ∈ USGraph) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)}) |
12 | eqid 2732 | . . . . 5 ⊢ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)} | |
13 | 7, 8, 12 | lfuhgr1v0e 28500 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ (♯‘(Vtx‘𝐺)) = 1 ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 2 ≤ (♯‘𝑥)}) → (Edg‘𝐺) = ∅) |
14 | 2, 6, 11, 13 | syl3anc 1371 | . . 3 ⊢ (((𝐴 ∈ 𝑋 ∧ (Vtx‘𝐺) = {𝐴}) ∧ 𝐺 ∈ USGraph) → (Edg‘𝐺) = ∅) |
15 | uhgriedg0edg0 28376 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | |
16 | 1, 15 | syl 17 | . . . 4 ⊢ (𝐺 ∈ USGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
17 | 16 | adantl 482 | . . 3 ⊢ (((𝐴 ∈ 𝑋 ∧ (Vtx‘𝐺) = {𝐴}) ∧ 𝐺 ∈ USGraph) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
18 | 14, 17 | mpbid 231 | . 2 ⊢ (((𝐴 ∈ 𝑋 ∧ (Vtx‘𝐺) = {𝐴}) ∧ 𝐺 ∈ USGraph) → (iEdg‘𝐺) = ∅) |
19 | 18 | ex 413 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ (Vtx‘𝐺) = {𝐴}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 ∅c0 4321 𝒫 cpw 4601 {csn 4627 class class class wbr 5147 dom cdm 5675 ⟶wf 6536 ‘cfv 6540 1c1 11107 ≤ cle 11245 2c2 12263 ♯chash 14286 Vtxcvtx 28245 iEdgciedg 28246 Edgcedg 28296 UHGraphcuhgr 28305 USPGraphcuspgr 28397 USGraphcusgr 28398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 df-edg 28297 df-uhgr 28307 df-upgr 28331 df-uspgr 28399 df-usgr 28400 |
This theorem is referenced by: usgr1v 28502 usgr1v0e 28572 |
Copyright terms: Public domain | W3C validator |