| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgr1v0e | Structured version Visualization version GIF version | ||
| Description: The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 22-Oct-2020.) |
| Ref | Expression |
|---|---|
| fusgredgfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| fusgredgfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| usgr1v0e | ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐺 ∈ USGraph) | |
| 2 | vex 3438 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
| 3 | fusgredgfi.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | 3 | eqeq1i 2735 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑣} ↔ (Vtx‘𝐺) = {𝑣}) |
| 5 | 4 | biimpi 216 | . . . . . . . . 9 ⊢ (𝑉 = {𝑣} → (Vtx‘𝐺) = {𝑣}) |
| 6 | 5 | adantl 481 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (Vtx‘𝐺) = {𝑣}) |
| 7 | usgr1vr 29226 | . . . . . . . 8 ⊢ ((𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) | |
| 8 | 2, 6, 7 | sylancr 587 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) |
| 9 | 1, 8 | mpd 15 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (iEdg‘𝐺) = ∅) |
| 10 | fusgredgfi.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
| 11 | 10 | eqeq1i 2735 | . . . . . . 7 ⊢ (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅) |
| 12 | usgruhgr 29157 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
| 13 | uhgriedg0edg0 29098 | . . . . . . . . 9 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | |
| 14 | 12, 13 | syl 17 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 16 | 11, 15 | bitrid 283 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 17 | 9, 16 | mpbird 257 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐸 = ∅) |
| 18 | 17 | ex 412 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑉 = {𝑣} → 𝐸 = ∅)) |
| 19 | 18 | exlimdv 1934 | . . 3 ⊢ (𝐺 ∈ USGraph → (∃𝑣 𝑉 = {𝑣} → 𝐸 = ∅)) |
| 20 | 3 | fvexi 6831 | . . . 4 ⊢ 𝑉 ∈ V |
| 21 | hash1snb 14318 | . . . 4 ⊢ (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})) | |
| 22 | 20, 21 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})) |
| 23 | 10 | fvexi 6831 | . . . 4 ⊢ 𝐸 ∈ V |
| 24 | hasheq0 14262 | . . . 4 ⊢ (𝐸 ∈ V → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅)) | |
| 25 | 23, 24 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ USGraph → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅)) |
| 26 | 19, 22, 25 | 3imtr4d 294 | . 2 ⊢ (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 → (♯‘𝐸) = 0)) |
| 27 | 26 | imp 406 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2110 Vcvv 3434 ∅c0 4281 {csn 4574 ‘cfv 6477 0cc0 10998 1c1 10999 ♯chash 14229 Vtxcvtx 28967 iEdgciedg 28968 Edgcedg 29018 UHGraphcuhgr 29027 USGraphcusgr 29120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-fz 13400 df-hash 14230 df-edg 29019 df-uhgr 29029 df-upgr 29053 df-uspgr 29121 df-usgr 29122 |
| This theorem is referenced by: cusgrsizeindb1 29422 |
| Copyright terms: Public domain | W3C validator |