MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1v0e Structured version   Visualization version   GIF version

Theorem usgr1v0e 28580
Description: The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 22-Oct-2020.)
Hypotheses
Ref Expression
fusgredgfi.v 𝑉 = (Vtx‘𝐺)
fusgredgfi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgr1v0e ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0)

Proof of Theorem usgr1v0e
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐺 ∈ USGraph)
2 vex 3478 . . . . . . . 8 𝑣 ∈ V
3 fusgredgfi.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
43eqeq1i 2737 . . . . . . . . . 10 (𝑉 = {𝑣} ↔ (Vtx‘𝐺) = {𝑣})
54biimpi 215 . . . . . . . . 9 (𝑉 = {𝑣} → (Vtx‘𝐺) = {𝑣})
65adantl 482 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (Vtx‘𝐺) = {𝑣})
7 usgr1vr 28509 . . . . . . . 8 ((𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
82, 6, 7sylancr 587 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
91, 8mpd 15 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (iEdg‘𝐺) = ∅)
10 fusgredgfi.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1110eqeq1i 2737 . . . . . . 7 (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅)
12 usgruhgr 28440 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
13 uhgriedg0edg0 28384 . . . . . . . . 9 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1412, 13syl 17 . . . . . . . 8 (𝐺 ∈ USGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1514adantr 481 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1611, 15bitrid 282 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅))
179, 16mpbird 256 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐸 = ∅)
1817ex 413 . . . 4 (𝐺 ∈ USGraph → (𝑉 = {𝑣} → 𝐸 = ∅))
1918exlimdv 1936 . . 3 (𝐺 ∈ USGraph → (∃𝑣 𝑉 = {𝑣} → 𝐸 = ∅))
203fvexi 6905 . . . 4 𝑉 ∈ V
21 hash1snb 14378 . . . 4 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
2220, 21mp1i 13 . . 3 (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
2310fvexi 6905 . . . 4 𝐸 ∈ V
24 hasheq0 14322 . . . 4 (𝐸 ∈ V → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅))
2523, 24mp1i 13 . . 3 (𝐺 ∈ USGraph → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅))
2619, 22, 253imtr4d 293 . 2 (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 → (♯‘𝐸) = 0))
2726imp 407 1 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  Vcvv 3474  c0 4322  {csn 4628  cfv 6543  0cc0 11109  1c1 11110  chash 14289  Vtxcvtx 28253  iEdgciedg 28254  Edgcedg 28304  UHGraphcuhgr 28313  USGraphcusgr 28406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oadd 8469  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-fz 13484  df-hash 14290  df-edg 28305  df-uhgr 28315  df-upgr 28339  df-uspgr 28407  df-usgr 28408
This theorem is referenced by:  cusgrsizeindb1  28704
  Copyright terms: Public domain W3C validator