Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1v0e Structured version   Visualization version   GIF version

Theorem usgr1v0e 26623
 Description: The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 22-Oct-2020.)
Hypotheses
Ref Expression
fusgredgfi.v 𝑉 = (Vtx‘𝐺)
fusgredgfi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgr1v0e ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0)

Proof of Theorem usgr1v0e
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 476 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐺 ∈ USGraph)
2 vex 3417 . . . . . . . . 9 𝑣 ∈ V
32a1i 11 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝑣 ∈ V)
4 fusgredgfi.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
54eqeq1i 2830 . . . . . . . . . 10 (𝑉 = {𝑣} ↔ (Vtx‘𝐺) = {𝑣})
65biimpi 208 . . . . . . . . 9 (𝑉 = {𝑣} → (Vtx‘𝐺) = {𝑣})
76adantl 475 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (Vtx‘𝐺) = {𝑣})
8 usgr1vr 26552 . . . . . . . . 9 ((𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
983adant1 1166 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
101, 3, 7, 9syl3anc 1496 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
111, 10mpd 15 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (iEdg‘𝐺) = ∅)
12 fusgredgfi.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1312eqeq1i 2830 . . . . . . 7 (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅)
14 usgruhgr 26482 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
15 uhgriedg0edg0 26425 . . . . . . . . 9 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1614, 15syl 17 . . . . . . . 8 (𝐺 ∈ USGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1716adantr 474 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1813, 17syl5bb 275 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅))
1911, 18mpbird 249 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐸 = ∅)
2019ex 403 . . . 4 (𝐺 ∈ USGraph → (𝑉 = {𝑣} → 𝐸 = ∅))
2120exlimdv 2034 . . 3 (𝐺 ∈ USGraph → (∃𝑣 𝑉 = {𝑣} → 𝐸 = ∅))
224fvexi 6447 . . . 4 𝑉 ∈ V
23 hash1snb 13496 . . . 4 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
2422, 23mp1i 13 . . 3 (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
2512fvexi 6447 . . . 4 𝐸 ∈ V
26 hasheq0 13444 . . . 4 (𝐸 ∈ V → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅))
2725, 26mp1i 13 . . 3 (𝐺 ∈ USGraph → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅))
2821, 24, 273imtr4d 286 . 2 (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 → (♯‘𝐸) = 0))
2928imp 397 1 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1658  ∃wex 1880   ∈ wcel 2166  Vcvv 3414  ∅c0 4144  {csn 4397  ‘cfv 6123  0cc0 10252  1c1 10253  ♯chash 13410  Vtxcvtx 26294  iEdgciedg 26295  Edgcedg 26345  UHGraphcuhgr 26354  USGraphcusgr 26448 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-xnn0 11691  df-z 11705  df-uz 11969  df-fz 12620  df-hash 13411  df-edg 26346  df-uhgr 26356  df-upgr 26380  df-uspgr 26449  df-usgr 26450 This theorem is referenced by:  cusgrsizeindb1  26748
 Copyright terms: Public domain W3C validator