| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgr1v0e | Structured version Visualization version GIF version | ||
| Description: The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 22-Oct-2020.) |
| Ref | Expression |
|---|---|
| fusgredgfi.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| fusgredgfi.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| usgr1v0e | ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐺 ∈ USGraph) | |
| 2 | vex 3467 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
| 3 | fusgredgfi.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | 3 | eqeq1i 2739 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑣} ↔ (Vtx‘𝐺) = {𝑣}) |
| 5 | 4 | biimpi 216 | . . . . . . . . 9 ⊢ (𝑉 = {𝑣} → (Vtx‘𝐺) = {𝑣}) |
| 6 | 5 | adantl 481 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (Vtx‘𝐺) = {𝑣}) |
| 7 | usgr1vr 29201 | . . . . . . . 8 ⊢ ((𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) | |
| 8 | 2, 6, 7 | sylancr 587 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅)) |
| 9 | 1, 8 | mpd 15 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (iEdg‘𝐺) = ∅) |
| 10 | fusgredgfi.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
| 11 | 10 | eqeq1i 2739 | . . . . . . 7 ⊢ (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅) |
| 12 | usgruhgr 29132 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
| 13 | uhgriedg0edg0 29073 | . . . . . . . . 9 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | |
| 14 | 12, 13 | syl 17 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 16 | 11, 15 | bitrid 283 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 17 | 9, 16 | mpbird 257 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐸 = ∅) |
| 18 | 17 | ex 412 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑉 = {𝑣} → 𝐸 = ∅)) |
| 19 | 18 | exlimdv 1932 | . . 3 ⊢ (𝐺 ∈ USGraph → (∃𝑣 𝑉 = {𝑣} → 𝐸 = ∅)) |
| 20 | 3 | fvexi 6900 | . . . 4 ⊢ 𝑉 ∈ V |
| 21 | hash1snb 14441 | . . . 4 ⊢ (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})) | |
| 22 | 20, 21 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})) |
| 23 | 10 | fvexi 6900 | . . . 4 ⊢ 𝐸 ∈ V |
| 24 | hasheq0 14385 | . . . 4 ⊢ (𝐸 ∈ V → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅)) | |
| 25 | 23, 24 | mp1i 13 | . . 3 ⊢ (𝐺 ∈ USGraph → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅)) |
| 26 | 19, 22, 25 | 3imtr4d 294 | . 2 ⊢ (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 → (♯‘𝐸) = 0)) |
| 27 | 26 | imp 406 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 {csn 4606 ‘cfv 6541 0cc0 11137 1c1 11138 ♯chash 14352 Vtxcvtx 28942 iEdgciedg 28943 Edgcedg 28993 UHGraphcuhgr 29002 USGraphcusgr 29095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13530 df-hash 14353 df-edg 28994 df-uhgr 29004 df-upgr 29028 df-uspgr 29096 df-usgr 29097 |
| This theorem is referenced by: cusgrsizeindb1 29397 |
| Copyright terms: Public domain | W3C validator |