MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr1v0e Structured version   Visualization version   GIF version

Theorem usgr1v0e 29253
Description: The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 22-Oct-2020.)
Hypotheses
Ref Expression
fusgredgfi.v 𝑉 = (Vtx‘𝐺)
fusgredgfi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
usgr1v0e ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0)

Proof of Theorem usgr1v0e
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐺 ∈ USGraph)
2 vex 3451 . . . . . . . 8 𝑣 ∈ V
3 fusgredgfi.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
43eqeq1i 2734 . . . . . . . . . 10 (𝑉 = {𝑣} ↔ (Vtx‘𝐺) = {𝑣})
54biimpi 216 . . . . . . . . 9 (𝑉 = {𝑣} → (Vtx‘𝐺) = {𝑣})
65adantl 481 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (Vtx‘𝐺) = {𝑣})
7 usgr1vr 29182 . . . . . . . 8 ((𝑣 ∈ V ∧ (Vtx‘𝐺) = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
82, 6, 7sylancr 587 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐺 ∈ USGraph → (iEdg‘𝐺) = ∅))
91, 8mpd 15 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (iEdg‘𝐺) = ∅)
10 fusgredgfi.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1110eqeq1i 2734 . . . . . . 7 (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅)
12 usgruhgr 29113 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
13 uhgriedg0edg0 29054 . . . . . . . . 9 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1412, 13syl 17 . . . . . . . 8 (𝐺 ∈ USGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1514adantr 480 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1611, 15bitrid 283 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅))
179, 16mpbird 257 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑉 = {𝑣}) → 𝐸 = ∅)
1817ex 412 . . . 4 (𝐺 ∈ USGraph → (𝑉 = {𝑣} → 𝐸 = ∅))
1918exlimdv 1933 . . 3 (𝐺 ∈ USGraph → (∃𝑣 𝑉 = {𝑣} → 𝐸 = ∅))
203fvexi 6872 . . . 4 𝑉 ∈ V
21 hash1snb 14384 . . . 4 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
2220, 21mp1i 13 . . 3 (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
2310fvexi 6872 . . . 4 𝐸 ∈ V
24 hasheq0 14328 . . . 4 (𝐸 ∈ V → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅))
2523, 24mp1i 13 . . 3 (𝐺 ∈ USGraph → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅))
2619, 22, 253imtr4d 294 . 2 (𝐺 ∈ USGraph → ((♯‘𝑉) = 1 → (♯‘𝐸) = 0))
2726imp 406 1 ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 1) → (♯‘𝐸) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  c0 4296  {csn 4589  cfv 6511  0cc0 11068  1c1 11069  chash 14295  Vtxcvtx 28923  iEdgciedg 28924  Edgcedg 28974  UHGraphcuhgr 28983  USGraphcusgr 29076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-edg 28975  df-uhgr 28985  df-upgr 29009  df-uspgr 29077  df-usgr 29078
This theorem is referenced by:  cusgrsizeindb1  29378
  Copyright terms: Public domain W3C validator