| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > card1 | Structured version Visualization version GIF version | ||
| Description: A set has cardinality one iff it is a singleton. (Contributed by Mario Carneiro, 10-Jan-2013.) |
| Ref | Expression |
|---|---|
| card1 | ⊢ ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8615 | . . . . . . . 8 ⊢ 1o ∈ ω | |
| 2 | cardnn 9934 | . . . . . . . 8 ⊢ (1o ∈ ω → (card‘1o) = 1o) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ (card‘1o) = 1o |
| 4 | 1n0 8463 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 5 | 3, 4 | eqnetri 2997 | . . . . . 6 ⊢ (card‘1o) ≠ ∅ |
| 6 | carden2a 9937 | . . . . . 6 ⊢ (((card‘1o) = (card‘𝐴) ∧ (card‘1o) ≠ ∅) → 1o ≈ 𝐴) | |
| 7 | 5, 6 | mpan2 691 | . . . . 5 ⊢ ((card‘1o) = (card‘𝐴) → 1o ≈ 𝐴) |
| 8 | 7 | eqcoms 2738 | . . . 4 ⊢ ((card‘𝐴) = (card‘1o) → 1o ≈ 𝐴) |
| 9 | 8 | ensymd 8982 | . . 3 ⊢ ((card‘𝐴) = (card‘1o) → 𝐴 ≈ 1o) |
| 10 | carden2b 9938 | . . 3 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o)) | |
| 11 | 9, 10 | impbii 209 | . 2 ⊢ ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o) |
| 12 | 3 | eqeq2i 2743 | . 2 ⊢ ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o) |
| 13 | en1 9001 | . 2 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | |
| 14 | 11, 12, 13 | 3bitr3i 301 | 1 ⊢ ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2927 ∅c0 4304 {csn 4597 class class class wbr 5115 ‘cfv 6519 ωcom 7850 1oc1o 8436 ≈ cen 8919 cardccrd 9906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-om 7851 df-1o 8443 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9910 |
| This theorem is referenced by: cardsn 9940 |
| Copyright terms: Public domain | W3C validator |