MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card1 Structured version   Visualization version   GIF version

Theorem card1 9960
Description: A set has cardinality one iff it is a singleton. (Contributed by Mario Carneiro, 10-Jan-2013.)
Assertion
Ref Expression
card1 ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem card1
StepHypRef Expression
1 1onn 8636 . . . . . . . 8 1o ∈ ω
2 cardnn 9955 . . . . . . . 8 (1o ∈ ω → (card‘1o) = 1o)
31, 2ax-mp 5 . . . . . . 7 (card‘1o) = 1o
4 1n0 8484 . . . . . . 7 1o ≠ ∅
53, 4eqnetri 3003 . . . . . 6 (card‘1o) ≠ ∅
6 carden2a 9958 . . . . . 6 (((card‘1o) = (card‘𝐴) ∧ (card‘1o) ≠ ∅) → 1o𝐴)
75, 6mpan2 688 . . . . 5 ((card‘1o) = (card‘𝐴) → 1o𝐴)
87eqcoms 2732 . . . 4 ((card‘𝐴) = (card‘1o) → 1o𝐴)
98ensymd 8998 . . 3 ((card‘𝐴) = (card‘1o) → 𝐴 ≈ 1o)
10 carden2b 9959 . . 3 (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o))
119, 10impbii 208 . 2 ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)
123eqeq2i 2737 . 2 ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o)
13 en1 9018 . 2 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
1411, 12, 133bitr3i 301 1 ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wex 1773  wcel 2098  wne 2932  c0 4315  {csn 4621   class class class wbr 5139  cfv 6534  ωcom 7849  1oc1o 8455  cen 8933  cardccrd 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-om 7850  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-card 9931
This theorem is referenced by:  cardsn  9961
  Copyright terms: Public domain W3C validator