![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > card1 | Structured version Visualization version GIF version |
Description: A set has cardinality one iff it is a singleton. (Contributed by Mario Carneiro, 10-Jan-2013.) |
Ref | Expression |
---|---|
card1 | ⊢ ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8698 | . . . . . . . 8 ⊢ 1o ∈ ω | |
2 | cardnn 10034 | . . . . . . . 8 ⊢ (1o ∈ ω → (card‘1o) = 1o) | |
3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ (card‘1o) = 1o |
4 | 1n0 8546 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
5 | 3, 4 | eqnetri 3017 | . . . . . 6 ⊢ (card‘1o) ≠ ∅ |
6 | carden2a 10037 | . . . . . 6 ⊢ (((card‘1o) = (card‘𝐴) ∧ (card‘1o) ≠ ∅) → 1o ≈ 𝐴) | |
7 | 5, 6 | mpan2 690 | . . . . 5 ⊢ ((card‘1o) = (card‘𝐴) → 1o ≈ 𝐴) |
8 | 7 | eqcoms 2748 | . . . 4 ⊢ ((card‘𝐴) = (card‘1o) → 1o ≈ 𝐴) |
9 | 8 | ensymd 9067 | . . 3 ⊢ ((card‘𝐴) = (card‘1o) → 𝐴 ≈ 1o) |
10 | carden2b 10038 | . . 3 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o)) | |
11 | 9, 10 | impbii 209 | . 2 ⊢ ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o) |
12 | 3 | eqeq2i 2753 | . 2 ⊢ ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o) |
13 | en1 9088 | . 2 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | |
14 | 11, 12, 13 | 3bitr3i 301 | 1 ⊢ ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 {csn 4648 class class class wbr 5166 ‘cfv 6575 ωcom 7905 1oc1o 8517 ≈ cen 9002 cardccrd 10006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-om 7906 df-1o 8524 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-card 10010 |
This theorem is referenced by: cardsn 10040 |
Copyright terms: Public domain | W3C validator |