![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > card1 | Structured version Visualization version GIF version |
Description: A set has cardinality one iff it is a singleton. (Contributed by Mario Carneiro, 10-Jan-2013.) |
Ref | Expression |
---|---|
card1 | ⊢ ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8638 | . . . . . . . 8 ⊢ 1o ∈ ω | |
2 | cardnn 9957 | . . . . . . . 8 ⊢ (1o ∈ ω → (card‘1o) = 1o) | |
3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ (card‘1o) = 1o |
4 | 1n0 8487 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
5 | 3, 4 | eqnetri 3011 | . . . . . 6 ⊢ (card‘1o) ≠ ∅ |
6 | carden2a 9960 | . . . . . 6 ⊢ (((card‘1o) = (card‘𝐴) ∧ (card‘1o) ≠ ∅) → 1o ≈ 𝐴) | |
7 | 5, 6 | mpan2 689 | . . . . 5 ⊢ ((card‘1o) = (card‘𝐴) → 1o ≈ 𝐴) |
8 | 7 | eqcoms 2740 | . . . 4 ⊢ ((card‘𝐴) = (card‘1o) → 1o ≈ 𝐴) |
9 | 8 | ensymd 9000 | . . 3 ⊢ ((card‘𝐴) = (card‘1o) → 𝐴 ≈ 1o) |
10 | carden2b 9961 | . . 3 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o)) | |
11 | 9, 10 | impbii 208 | . 2 ⊢ ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o) |
12 | 3 | eqeq2i 2745 | . 2 ⊢ ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o) |
13 | en1 9020 | . 2 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | |
14 | 11, 12, 13 | 3bitr3i 300 | 1 ⊢ ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∅c0 4322 {csn 4628 class class class wbr 5148 ‘cfv 6543 ωcom 7854 1oc1o 8458 ≈ cen 8935 cardccrd 9929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7855 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 |
This theorem is referenced by: cardsn 9963 |
Copyright terms: Public domain | W3C validator |