MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card1 Structured version   Visualization version   GIF version

Theorem card1 10012
Description: A set has cardinality one iff it is a singleton. (Contributed by Mario Carneiro, 10-Jan-2013.)
Assertion
Ref Expression
card1 ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem card1
StepHypRef Expression
1 1onn 8683 . . . . . . . 8 1o ∈ ω
2 cardnn 10007 . . . . . . . 8 (1o ∈ ω → (card‘1o) = 1o)
31, 2ax-mp 5 . . . . . . 7 (card‘1o) = 1o
4 1n0 8531 . . . . . . 7 1o ≠ ∅
53, 4eqnetri 3010 . . . . . 6 (card‘1o) ≠ ∅
6 carden2a 10010 . . . . . 6 (((card‘1o) = (card‘𝐴) ∧ (card‘1o) ≠ ∅) → 1o𝐴)
75, 6mpan2 691 . . . . 5 ((card‘1o) = (card‘𝐴) → 1o𝐴)
87eqcoms 2744 . . . 4 ((card‘𝐴) = (card‘1o) → 1o𝐴)
98ensymd 9050 . . 3 ((card‘𝐴) = (card‘1o) → 𝐴 ≈ 1o)
10 carden2b 10011 . . 3 (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o))
119, 10impbii 209 . 2 ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)
123eqeq2i 2749 . 2 ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o)
13 en1 9069 . 2 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
1411, 12, 133bitr3i 301 1 ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1538  wex 1777  wcel 2107  wne 2939  c0 4340  {csn 4632   class class class wbr 5149  cfv 6566  ωcom 7891  1oc1o 8504  cen 8987  cardccrd 9979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-om 7892  df-1o 8511  df-er 8750  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-card 9983
This theorem is referenced by:  cardsn  10013
  Copyright terms: Public domain W3C validator