| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > card1 | Structured version Visualization version GIF version | ||
| Description: A set has cardinality one iff it is a singleton. (Contributed by Mario Carneiro, 10-Jan-2013.) |
| Ref | Expression |
|---|---|
| card1 | ⊢ ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 8604 | . . . . . . . 8 ⊢ 1o ∈ ω | |
| 2 | cardnn 9916 | . . . . . . . 8 ⊢ (1o ∈ ω → (card‘1o) = 1o) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ (card‘1o) = 1o |
| 4 | 1n0 8452 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
| 5 | 3, 4 | eqnetri 2995 | . . . . . 6 ⊢ (card‘1o) ≠ ∅ |
| 6 | carden2a 9919 | . . . . . 6 ⊢ (((card‘1o) = (card‘𝐴) ∧ (card‘1o) ≠ ∅) → 1o ≈ 𝐴) | |
| 7 | 5, 6 | mpan2 691 | . . . . 5 ⊢ ((card‘1o) = (card‘𝐴) → 1o ≈ 𝐴) |
| 8 | 7 | eqcoms 2737 | . . . 4 ⊢ ((card‘𝐴) = (card‘1o) → 1o ≈ 𝐴) |
| 9 | 8 | ensymd 8976 | . . 3 ⊢ ((card‘𝐴) = (card‘1o) → 𝐴 ≈ 1o) |
| 10 | carden2b 9920 | . . 3 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o)) | |
| 11 | 9, 10 | impbii 209 | . 2 ⊢ ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o) |
| 12 | 3 | eqeq2i 2742 | . 2 ⊢ ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o) |
| 13 | en1 8995 | . 2 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | |
| 14 | 11, 12, 13 | 3bitr3i 301 | 1 ⊢ ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 {csn 4589 class class class wbr 5107 ‘cfv 6511 ωcom 7842 1oc1o 8427 ≈ cen 8915 cardccrd 9888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 |
| This theorem is referenced by: cardsn 9922 |
| Copyright terms: Public domain | W3C validator |