MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card1 Structured version   Visualization version   GIF version

Theorem card1 10039
Description: A set has cardinality one iff it is a singleton. (Contributed by Mario Carneiro, 10-Jan-2013.)
Assertion
Ref Expression
card1 ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem card1
StepHypRef Expression
1 1onn 8698 . . . . . . . 8 1o ∈ ω
2 cardnn 10034 . . . . . . . 8 (1o ∈ ω → (card‘1o) = 1o)
31, 2ax-mp 5 . . . . . . 7 (card‘1o) = 1o
4 1n0 8546 . . . . . . 7 1o ≠ ∅
53, 4eqnetri 3017 . . . . . 6 (card‘1o) ≠ ∅
6 carden2a 10037 . . . . . 6 (((card‘1o) = (card‘𝐴) ∧ (card‘1o) ≠ ∅) → 1o𝐴)
75, 6mpan2 690 . . . . 5 ((card‘1o) = (card‘𝐴) → 1o𝐴)
87eqcoms 2748 . . . 4 ((card‘𝐴) = (card‘1o) → 1o𝐴)
98ensymd 9067 . . 3 ((card‘𝐴) = (card‘1o) → 𝐴 ≈ 1o)
10 carden2b 10038 . . 3 (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o))
119, 10impbii 209 . 2 ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o)
123eqeq2i 2753 . 2 ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o)
13 en1 9088 . 2 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
1411, 12, 133bitr3i 301 1 ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wex 1777  wcel 2108  wne 2946  c0 4352  {csn 4648   class class class wbr 5166  cfv 6575  ωcom 7905  1oc1o 8517  cen 9002  cardccrd 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-om 7906  df-1o 8524  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-card 10010
This theorem is referenced by:  cardsn  10040
  Copyright terms: Public domain W3C validator