![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > card1 | Structured version Visualization version GIF version |
Description: A set has cardinality one iff it is a singleton. (Contributed by Mario Carneiro, 10-Jan-2013.) |
Ref | Expression |
---|---|
card1 | ⊢ ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8683 | . . . . . . . 8 ⊢ 1o ∈ ω | |
2 | cardnn 10007 | . . . . . . . 8 ⊢ (1o ∈ ω → (card‘1o) = 1o) | |
3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ (card‘1o) = 1o |
4 | 1n0 8531 | . . . . . . 7 ⊢ 1o ≠ ∅ | |
5 | 3, 4 | eqnetri 3010 | . . . . . 6 ⊢ (card‘1o) ≠ ∅ |
6 | carden2a 10010 | . . . . . 6 ⊢ (((card‘1o) = (card‘𝐴) ∧ (card‘1o) ≠ ∅) → 1o ≈ 𝐴) | |
7 | 5, 6 | mpan2 691 | . . . . 5 ⊢ ((card‘1o) = (card‘𝐴) → 1o ≈ 𝐴) |
8 | 7 | eqcoms 2744 | . . . 4 ⊢ ((card‘𝐴) = (card‘1o) → 1o ≈ 𝐴) |
9 | 8 | ensymd 9050 | . . 3 ⊢ ((card‘𝐴) = (card‘1o) → 𝐴 ≈ 1o) |
10 | carden2b 10011 | . . 3 ⊢ (𝐴 ≈ 1o → (card‘𝐴) = (card‘1o)) | |
11 | 9, 10 | impbii 209 | . 2 ⊢ ((card‘𝐴) = (card‘1o) ↔ 𝐴 ≈ 1o) |
12 | 3 | eqeq2i 2749 | . 2 ⊢ ((card‘𝐴) = (card‘1o) ↔ (card‘𝐴) = 1o) |
13 | en1 9069 | . 2 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | |
14 | 11, 12, 13 | 3bitr3i 301 | 1 ⊢ ((card‘𝐴) = 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1538 ∃wex 1777 ∈ wcel 2107 ≠ wne 2939 ∅c0 4340 {csn 4632 class class class wbr 5149 ‘cfv 6566 ωcom 7891 1oc1o 8504 ≈ cen 8987 cardccrd 9979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-om 7892 df-1o 8511 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-card 9983 |
This theorem is referenced by: cardsn 10013 |
Copyright terms: Public domain | W3C validator |