Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bor1sal Structured version   Visualization version   GIF version

Theorem bor1sal 46211
Description: The Borel sigma-algebra on the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
bor1sal.t 𝐽 = (topGen‘ran (,))
bor1sal.b 𝐵 = (SalGen‘𝐽)
Assertion
Ref Expression
bor1sal 𝐵 ∈ SAlg

Proof of Theorem bor1sal
StepHypRef Expression
1 bor1sal.t . . . . 5 𝐽 = (topGen‘ran (,))
2 retop 24796 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2834 . . . 4 𝐽 ∈ Top
43a1i 11 . . 3 (⊤ → 𝐽 ∈ Top)
5 bor1sal.b . . 3 𝐵 = (SalGen‘𝐽)
64, 5salgencld 46205 . 2 (⊤ → 𝐵 ∈ SAlg)
76mptru 1544 1 𝐵 ∈ SAlg
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wtru 1538  wcel 2103  ran crn 5700  cfv 6572  (,)cioo 13403  topGenctg 17492  Topctop 22913  SAlgcsalg 46164  SalGencsalgen 46168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-pre-lttri 11254  ax-pre-lttrn 11255
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-po 5611  df-so 5612  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-ov 7448  df-oprab 7449  df-mpo 7450  df-1st 8026  df-2nd 8027  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-ioo 13407  df-topgen 17498  df-top 22914  df-bases 22967  df-salg 46165  df-salgen 46169
This theorem is referenced by:  iocborel  46212
  Copyright terms: Public domain W3C validator