![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bor1sal | Structured version Visualization version GIF version |
Description: The Borel sigma-algebra on the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
bor1sal.t | ⊢ 𝐽 = (topGen‘ran (,)) |
bor1sal.b | ⊢ 𝐵 = (SalGen‘𝐽) |
Ref | Expression |
---|---|
bor1sal | ⊢ 𝐵 ∈ SAlg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bor1sal.t | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
2 | retop 24796 | . . . . 5 ⊢ (topGen‘ran (,)) ∈ Top | |
3 | 1, 2 | eqeltri 2834 | . . . 4 ⊢ 𝐽 ∈ Top |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐽 ∈ Top) |
5 | bor1sal.b | . . 3 ⊢ 𝐵 = (SalGen‘𝐽) | |
6 | 4, 5 | salgencld 46205 | . 2 ⊢ (⊤ → 𝐵 ∈ SAlg) |
7 | 6 | mptru 1544 | 1 ⊢ 𝐵 ∈ SAlg |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ∈ wcel 2103 ran crn 5700 ‘cfv 6572 (,)cioo 13403 topGenctg 17492 Topctop 22913 SAlgcsalg 46164 SalGencsalgen 46168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-pre-lttri 11254 ax-pre-lttrn 11255 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-po 5611 df-so 5612 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-ov 7448 df-oprab 7449 df-mpo 7450 df-1st 8026 df-2nd 8027 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-ioo 13407 df-topgen 17498 df-top 22914 df-bases 22967 df-salg 46165 df-salgen 46169 |
This theorem is referenced by: iocborel 46212 |
Copyright terms: Public domain | W3C validator |