| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bor1sal | Structured version Visualization version GIF version | ||
| Description: The Borel sigma-algebra on the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| bor1sal.t | ⊢ 𝐽 = (topGen‘ran (,)) |
| bor1sal.b | ⊢ 𝐵 = (SalGen‘𝐽) |
| Ref | Expression |
|---|---|
| bor1sal | ⊢ 𝐵 ∈ SAlg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bor1sal.t | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 2 | retop 24717 | . . . . 5 ⊢ (topGen‘ran (,)) ∈ Top | |
| 3 | 1, 2 | eqeltri 2829 | . . . 4 ⊢ 𝐽 ∈ Top |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐽 ∈ Top) |
| 5 | bor1sal.b | . . 3 ⊢ 𝐵 = (SalGen‘𝐽) | |
| 6 | 4, 5 | salgencld 46297 | . 2 ⊢ (⊤ → 𝐵 ∈ SAlg) |
| 7 | 6 | mptru 1546 | 1 ⊢ 𝐵 ∈ SAlg |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ran crn 5666 ‘cfv 6540 (,)cioo 13368 topGenctg 17452 Topctop 22846 SAlgcsalg 46256 SalGencsalgen 46260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-pre-lttri 11210 ax-pre-lttrn 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7995 df-2nd 7996 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-ioo 13372 df-topgen 17458 df-top 22847 df-bases 22899 df-salg 46257 df-salgen 46261 |
| This theorem is referenced by: iocborel 46304 |
| Copyright terms: Public domain | W3C validator |