Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > utoptopon | Structured version Visualization version GIF version |
Description: Topology induced by a uniform structure 𝑈 with its base set. (Contributed by Thierry Arnoux, 5-Jan-2018.) |
Ref | Expression |
---|---|
utoptopon | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utoptop 23458 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top) | |
2 | utopbas 23459 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪ (unifTop‘𝑈)) | |
3 | istopon 22133 | . 2 ⊢ ((unifTop‘𝑈) ∈ (TopOn‘𝑋) ↔ ((unifTop‘𝑈) ∈ Top ∧ 𝑋 = ∪ (unifTop‘𝑈))) | |
4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∪ cuni 4850 ‘cfv 6465 Topctop 22114 TopOnctopon 22131 UnifOncust 23423 unifTopcutop 23454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-fv 6473 df-top 22115 df-topon 22132 df-ust 23424 df-utop 23455 |
This theorem is referenced by: utop3cls 23475 tustps 23497 |
Copyright terms: Public domain | W3C validator |