| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > utoptopon | Structured version Visualization version GIF version | ||
| Description: Topology induced by a uniform structure 𝑈 with its base set. (Contributed by Thierry Arnoux, 5-Jan-2018.) |
| Ref | Expression |
|---|---|
| utoptopon | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utoptop 24098 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top) | |
| 2 | utopbas 24099 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪ (unifTop‘𝑈)) | |
| 3 | istopon 22775 | . 2 ⊢ ((unifTop‘𝑈) ∈ (TopOn‘𝑋) ↔ ((unifTop‘𝑈) ∈ Top ∧ 𝑋 = ∪ (unifTop‘𝑈))) | |
| 4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 ‘cfv 6499 Topctop 22756 TopOnctopon 22773 UnifOncust 24063 unifTopcutop 24094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-top 22757 df-topon 22774 df-ust 24064 df-utop 24095 |
| This theorem is referenced by: utop3cls 24115 tustps 24136 |
| Copyright terms: Public domain | W3C validator |