MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcz Structured version   Visualization version   GIF version

Theorem vcz 28364
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vc0.1 𝐺 = (1st𝑊)
vc0.2 𝑆 = (2nd𝑊)
vc0.3 𝑋 = ran 𝐺
vc0.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
vcz ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)

Proof of Theorem vcz
StepHypRef Expression
1 vc0.1 . . . . . 6 𝐺 = (1st𝑊)
2 vc0.3 . . . . . 6 𝑋 = ran 𝐺
3 vc0.4 . . . . . 6 𝑍 = (GId‘𝐺)
41, 2, 3vczcl 28361 . . . . 5 (𝑊 ∈ CVecOLD𝑍𝑋)
54anim2i 619 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑊 ∈ CVecOLD) → (𝐴 ∈ ℂ ∧ 𝑍𝑋))
65ancoms 462 . . 3 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝑍𝑋))
7 0cn 10631 . . . 4 0 ∈ ℂ
8 vc0.2 . . . . 5 𝑆 = (2nd𝑊)
91, 8, 2vcass 28356 . . . 4 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑍𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
107, 9mp3anr2 1456 . . 3 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝑍𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
116, 10syldan 594 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
12 mul01 10817 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
1312oveq1d 7164 . . 3 (𝐴 ∈ ℂ → ((𝐴 · 0)𝑆𝑍) = (0𝑆𝑍))
141, 8, 2, 3vc0 28363 . . . 4 ((𝑊 ∈ CVecOLD𝑍𝑋) → (0𝑆𝑍) = 𝑍)
154, 14mpdan 686 . . 3 (𝑊 ∈ CVecOLD → (0𝑆𝑍) = 𝑍)
1613, 15sylan9eqr 2881 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = 𝑍)
1715oveq2d 7165 . . 3 (𝑊 ∈ CVecOLD → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍))
1817adantr 484 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍))
1911, 16, 183eqtr3rd 2868 1 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  ran crn 5543  cfv 6343  (class class class)co 7149  1st c1st 7682  2nd c2nd 7683  cc 10533  0cc0 10535   · cmul 10540  GIdcgi 28279  CVecOLDcvc 28347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-1st 7684  df-2nd 7685  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-ltxr 10678  df-grpo 28282  df-gid 28283  df-ginv 28284  df-ablo 28334  df-vc 28348
This theorem is referenced by:  nvsz  28427
  Copyright terms: Public domain W3C validator