MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcz Structured version   Visualization version   GIF version

Theorem vcz 27766
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vc0.1 𝐺 = (1st𝑊)
vc0.2 𝑆 = (2nd𝑊)
vc0.3 𝑋 = ran 𝐺
vc0.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
vcz ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)

Proof of Theorem vcz
StepHypRef Expression
1 vc0.1 . . . . . 6 𝐺 = (1st𝑊)
2 vc0.3 . . . . . 6 𝑋 = ran 𝐺
3 vc0.4 . . . . . 6 𝑍 = (GId‘𝐺)
41, 2, 3vczcl 27763 . . . . 5 (𝑊 ∈ CVecOLD𝑍𝑋)
54anim2i 603 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑊 ∈ CVecOLD) → (𝐴 ∈ ℂ ∧ 𝑍𝑋))
65ancoms 446 . . 3 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝑍𝑋))
7 0cn 10234 . . . 4 0 ∈ ℂ
8 vc0.2 . . . . 5 𝑆 = (2nd𝑊)
91, 8, 2vcass 27758 . . . 4 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑍𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
107, 9mp3anr2 1570 . . 3 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝑍𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
116, 10syldan 579 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
12 mul01 10417 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
1312oveq1d 6807 . . 3 (𝐴 ∈ ℂ → ((𝐴 · 0)𝑆𝑍) = (0𝑆𝑍))
141, 8, 2, 3vc0 27765 . . . 4 ((𝑊 ∈ CVecOLD𝑍𝑋) → (0𝑆𝑍) = 𝑍)
154, 14mpdan 667 . . 3 (𝑊 ∈ CVecOLD → (0𝑆𝑍) = 𝑍)
1613, 15sylan9eqr 2827 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = 𝑍)
1715oveq2d 6808 . . 3 (𝑊 ∈ CVecOLD → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍))
1817adantr 466 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍))
1911, 16, 183eqtr3rd 2814 1 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  ran crn 5250  cfv 6029  (class class class)co 6792  1st c1st 7313  2nd c2nd 7314  cc 10136  0cc0 10138   · cmul 10143  GIdcgi 27680  CVecOLDcvc 27749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6753  df-ov 6795  df-1st 7315  df-2nd 7316  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-ltxr 10281  df-grpo 27683  df-gid 27684  df-ginv 27685  df-ablo 27735  df-vc 27750
This theorem is referenced by:  nvsz  27829
  Copyright terms: Public domain W3C validator