Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vcz | Structured version Visualization version GIF version |
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vc0.1 | ⊢ 𝐺 = (1st ‘𝑊) |
vc0.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
vc0.3 | ⊢ 𝑋 = ran 𝐺 |
vc0.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
vcz | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vc0.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | vc0.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
3 | vc0.4 | . . . . . 6 ⊢ 𝑍 = (GId‘𝐺) | |
4 | 1, 2, 3 | vczcl 28835 | . . . . 5 ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) |
5 | 4 | anim2i 616 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑊 ∈ CVecOLD) → (𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋)) |
6 | 5 | ancoms 458 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋)) |
7 | 0cn 10898 | . . . 4 ⊢ 0 ∈ ℂ | |
8 | vc0.2 | . . . . 5 ⊢ 𝑆 = (2nd ‘𝑊) | |
9 | 1, 8, 2 | vcass 28830 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑍 ∈ 𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍))) |
10 | 7, 9 | mp3anr2 1457 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍))) |
11 | 6, 10 | syldan 590 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍))) |
12 | mul01 11084 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
13 | 12 | oveq1d 7270 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 · 0)𝑆𝑍) = (0𝑆𝑍)) |
14 | 1, 8, 2, 3 | vc0 28837 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝑍 ∈ 𝑋) → (0𝑆𝑍) = 𝑍) |
15 | 4, 14 | mpdan 683 | . . 3 ⊢ (𝑊 ∈ CVecOLD → (0𝑆𝑍) = 𝑍) |
16 | 13, 15 | sylan9eqr 2801 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = 𝑍) |
17 | 15 | oveq2d 7271 | . . 3 ⊢ (𝑊 ∈ CVecOLD → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍)) |
18 | 17 | adantr 480 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍)) |
19 | 11, 16, 18 | 3eqtr3rd 2787 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ran crn 5581 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 ℂcc 10800 0cc0 10802 · cmul 10807 GIdcgi 28753 CVecOLDcvc 28821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-vc 28822 |
This theorem is referenced by: nvsz 28901 |
Copyright terms: Public domain | W3C validator |