MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcz Structured version   Visualization version   GIF version

Theorem vcz 30550
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vc0.1 𝐺 = (1st𝑊)
vc0.2 𝑆 = (2nd𝑊)
vc0.3 𝑋 = ran 𝐺
vc0.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
vcz ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)

Proof of Theorem vcz
StepHypRef Expression
1 vc0.1 . . . . . 6 𝐺 = (1st𝑊)
2 vc0.3 . . . . . 6 𝑋 = ran 𝐺
3 vc0.4 . . . . . 6 𝑍 = (GId‘𝐺)
41, 2, 3vczcl 30547 . . . . 5 (𝑊 ∈ CVecOLD𝑍𝑋)
54anim2i 617 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑊 ∈ CVecOLD) → (𝐴 ∈ ℂ ∧ 𝑍𝑋))
65ancoms 458 . . 3 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝑍𝑋))
7 0cn 11101 . . . 4 0 ∈ ℂ
8 vc0.2 . . . . 5 𝑆 = (2nd𝑊)
91, 8, 2vcass 30542 . . . 4 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑍𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
107, 9mp3anr2 1461 . . 3 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝑍𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
116, 10syldan 591 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
12 mul01 11289 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
1312oveq1d 7361 . . 3 (𝐴 ∈ ℂ → ((𝐴 · 0)𝑆𝑍) = (0𝑆𝑍))
141, 8, 2, 3vc0 30549 . . . 4 ((𝑊 ∈ CVecOLD𝑍𝑋) → (0𝑆𝑍) = 𝑍)
154, 14mpdan 687 . . 3 (𝑊 ∈ CVecOLD → (0𝑆𝑍) = 𝑍)
1613, 15sylan9eqr 2788 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = 𝑍)
1715oveq2d 7362 . . 3 (𝑊 ∈ CVecOLD → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍))
1817adantr 480 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍))
1911, 16, 183eqtr3rd 2775 1 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ran crn 5617  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  cc 11001  0cc0 11003   · cmul 11008  GIdcgi 30465  CVecOLDcvc 30533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-grpo 30468  df-gid 30469  df-ginv 30470  df-ablo 30520  df-vc 30534
This theorem is referenced by:  nvsz  30613
  Copyright terms: Public domain W3C validator