MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcz Structured version   Visualization version   GIF version

Theorem vcz 28937
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vc0.1 𝐺 = (1st𝑊)
vc0.2 𝑆 = (2nd𝑊)
vc0.3 𝑋 = ran 𝐺
vc0.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
vcz ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)

Proof of Theorem vcz
StepHypRef Expression
1 vc0.1 . . . . . 6 𝐺 = (1st𝑊)
2 vc0.3 . . . . . 6 𝑋 = ran 𝐺
3 vc0.4 . . . . . 6 𝑍 = (GId‘𝐺)
41, 2, 3vczcl 28934 . . . . 5 (𝑊 ∈ CVecOLD𝑍𝑋)
54anim2i 617 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑊 ∈ CVecOLD) → (𝐴 ∈ ℂ ∧ 𝑍𝑋))
65ancoms 459 . . 3 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝑍𝑋))
7 0cn 10967 . . . 4 0 ∈ ℂ
8 vc0.2 . . . . 5 𝑆 = (2nd𝑊)
91, 8, 2vcass 28929 . . . 4 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑍𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
107, 9mp3anr2 1458 . . 3 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝑍𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
116, 10syldan 591 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
12 mul01 11154 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
1312oveq1d 7290 . . 3 (𝐴 ∈ ℂ → ((𝐴 · 0)𝑆𝑍) = (0𝑆𝑍))
141, 8, 2, 3vc0 28936 . . . 4 ((𝑊 ∈ CVecOLD𝑍𝑋) → (0𝑆𝑍) = 𝑍)
154, 14mpdan 684 . . 3 (𝑊 ∈ CVecOLD → (0𝑆𝑍) = 𝑍)
1613, 15sylan9eqr 2800 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = 𝑍)
1715oveq2d 7291 . . 3 (𝑊 ∈ CVecOLD → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍))
1817adantr 481 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍))
1911, 16, 183eqtr3rd 2787 1 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ran crn 5590  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  cc 10869  0cc0 10871   · cmul 10876  GIdcgi 28852  CVecOLDcvc 28920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-grpo 28855  df-gid 28856  df-ginv 28857  df-ablo 28907  df-vc 28921
This theorem is referenced by:  nvsz  29000
  Copyright terms: Public domain W3C validator