MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcz Structured version   Visualization version   GIF version

Theorem vcz 30508
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vc0.1 𝐺 = (1st𝑊)
vc0.2 𝑆 = (2nd𝑊)
vc0.3 𝑋 = ran 𝐺
vc0.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
vcz ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)

Proof of Theorem vcz
StepHypRef Expression
1 vc0.1 . . . . . 6 𝐺 = (1st𝑊)
2 vc0.3 . . . . . 6 𝑋 = ran 𝐺
3 vc0.4 . . . . . 6 𝑍 = (GId‘𝐺)
41, 2, 3vczcl 30505 . . . . 5 (𝑊 ∈ CVecOLD𝑍𝑋)
54anim2i 615 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑊 ∈ CVecOLD) → (𝐴 ∈ ℂ ∧ 𝑍𝑋))
65ancoms 457 . . 3 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝑍𝑋))
7 0cn 11256 . . . 4 0 ∈ ℂ
8 vc0.2 . . . . 5 𝑆 = (2nd𝑊)
91, 8, 2vcass 30500 . . . 4 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑍𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
107, 9mp3anr2 1456 . . 3 ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝑍𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
116, 10syldan 589 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍)))
12 mul01 11443 . . . 4 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
1312oveq1d 7439 . . 3 (𝐴 ∈ ℂ → ((𝐴 · 0)𝑆𝑍) = (0𝑆𝑍))
141, 8, 2, 3vc0 30507 . . . 4 ((𝑊 ∈ CVecOLD𝑍𝑋) → (0𝑆𝑍) = 𝑍)
154, 14mpdan 685 . . 3 (𝑊 ∈ CVecOLD → (0𝑆𝑍) = 𝑍)
1613, 15sylan9eqr 2788 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = 𝑍)
1715oveq2d 7440 . . 3 (𝑊 ∈ CVecOLD → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍))
1817adantr 479 . 2 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍))
1911, 16, 183eqtr3rd 2775 1 ((𝑊 ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  ran crn 5683  cfv 6554  (class class class)co 7424  1st c1st 8001  2nd c2nd 8002  cc 11156  0cc0 11158   · cmul 11163  GIdcgi 30423  CVecOLDcvc 30491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-1st 8003  df-2nd 8004  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-ltxr 11303  df-grpo 30426  df-gid 30427  df-ginv 30428  df-ablo 30478  df-vc 30492
This theorem is referenced by:  nvsz  30571
  Copyright terms: Public domain W3C validator