Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vcz | Structured version Visualization version GIF version |
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vc0.1 | ⊢ 𝐺 = (1st ‘𝑊) |
vc0.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
vc0.3 | ⊢ 𝑋 = ran 𝐺 |
vc0.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
vcz | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vc0.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | vc0.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
3 | vc0.4 | . . . . . 6 ⊢ 𝑍 = (GId‘𝐺) | |
4 | 1, 2, 3 | vczcl 28934 | . . . . 5 ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) |
5 | 4 | anim2i 617 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑊 ∈ CVecOLD) → (𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋)) |
6 | 5 | ancoms 459 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋)) |
7 | 0cn 10967 | . . . 4 ⊢ 0 ∈ ℂ | |
8 | vc0.2 | . . . . 5 ⊢ 𝑆 = (2nd ‘𝑊) | |
9 | 1, 8, 2 | vcass 28929 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑍 ∈ 𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍))) |
10 | 7, 9 | mp3anr2 1458 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍))) |
11 | 6, 10 | syldan 591 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍))) |
12 | mul01 11154 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
13 | 12 | oveq1d 7290 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 · 0)𝑆𝑍) = (0𝑆𝑍)) |
14 | 1, 8, 2, 3 | vc0 28936 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝑍 ∈ 𝑋) → (0𝑆𝑍) = 𝑍) |
15 | 4, 14 | mpdan 684 | . . 3 ⊢ (𝑊 ∈ CVecOLD → (0𝑆𝑍) = 𝑍) |
16 | 13, 15 | sylan9eqr 2800 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = 𝑍) |
17 | 15 | oveq2d 7291 | . . 3 ⊢ (𝑊 ∈ CVecOLD → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍)) |
18 | 17 | adantr 481 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍)) |
19 | 11, 16, 18 | 3eqtr3rd 2787 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ran crn 5590 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 ℂcc 10869 0cc0 10871 · cmul 10876 GIdcgi 28852 CVecOLDcvc 28920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-grpo 28855 df-gid 28856 df-ginv 28857 df-ablo 28907 df-vc 28921 |
This theorem is referenced by: nvsz 29000 |
Copyright terms: Public domain | W3C validator |