![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vcz | Structured version Visualization version GIF version |
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vc0.1 | ⊢ 𝐺 = (1st ‘𝑊) |
vc0.2 | ⊢ 𝑆 = (2nd ‘𝑊) |
vc0.3 | ⊢ 𝑋 = ran 𝐺 |
vc0.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
vcz | ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vc0.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑊) | |
2 | vc0.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
3 | vc0.4 | . . . . . 6 ⊢ 𝑍 = (GId‘𝐺) | |
4 | 1, 2, 3 | vczcl 28141 | . . . . 5 ⊢ (𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋) |
5 | 4 | anim2i 608 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑊 ∈ CVecOLD) → (𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋)) |
6 | 5 | ancoms 451 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋)) |
7 | 0cn 10429 | . . . 4 ⊢ 0 ∈ ℂ | |
8 | vc0.2 | . . . . 5 ⊢ 𝑆 = (2nd ‘𝑊) | |
9 | 1, 8, 2 | vcass 28136 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑍 ∈ 𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍))) |
10 | 7, 9 | mp3anr2 1439 | . . 3 ⊢ ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝑍 ∈ 𝑋)) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍))) |
11 | 6, 10 | syldan 583 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = (𝐴𝑆(0𝑆𝑍))) |
12 | mul01 10617 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
13 | 12 | oveq1d 6989 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 · 0)𝑆𝑍) = (0𝑆𝑍)) |
14 | 1, 8, 2, 3 | vc0 28143 | . . . 4 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝑍 ∈ 𝑋) → (0𝑆𝑍) = 𝑍) |
15 | 4, 14 | mpdan 675 | . . 3 ⊢ (𝑊 ∈ CVecOLD → (0𝑆𝑍) = 𝑍) |
16 | 13, 15 | sylan9eqr 2829 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → ((𝐴 · 0)𝑆𝑍) = 𝑍) |
17 | 15 | oveq2d 6990 | . . 3 ⊢ (𝑊 ∈ CVecOLD → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍)) |
18 | 17 | adantr 473 | . 2 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(0𝑆𝑍)) = (𝐴𝑆𝑍)) |
19 | 11, 16, 18 | 3eqtr3rd 2816 | 1 ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ran crn 5404 ‘cfv 6185 (class class class)co 6974 1st c1st 7497 2nd c2nd 7498 ℂcc 10331 0cc0 10333 · cmul 10338 GIdcgi 28059 CVecOLDcvc 28127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-po 5322 df-so 5323 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-1st 7499 df-2nd 7500 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-ltxr 10477 df-grpo 28062 df-gid 28063 df-ginv 28064 df-ablo 28114 df-vc 28128 |
This theorem is referenced by: nvsz 28207 |
Copyright terms: Public domain | W3C validator |