MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvsass Structured version   Visualization version   GIF version

Theorem nvsass 28008
Description: Associative law for the scalar product of a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSet‘𝑈)
nvscl.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvsass ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))

Proof of Theorem nvsass
StepHypRef Expression
1 eqid 2799 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 27995 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 eqid 2799 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
43vafval 27983 . . 3 ( +𝑣𝑈) = (1st ‘(1st𝑈))
5 nvscl.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 27985 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvscl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 27984 . . 3 𝑋 = ran ( +𝑣𝑈)
94, 6, 8vcass 27947 . 2 (((1st𝑈) ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))
102, 9sylan 576 1 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  cfv 6101  (class class class)co 6878  1st c1st 7399  cc 10222   · cmul 10229  CVecOLDcvc 27938  NrmCVeccnv 27964   +𝑣 cpv 27965  BaseSetcba 27966   ·𝑠OLD cns 27967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-1st 7401  df-2nd 7402  df-vc 27939  df-nv 27972  df-va 27975  df-ba 27976  df-sm 27977  df-0v 27978  df-nmcv 27980
This theorem is referenced by:  nvscom  28009  nvmul0or  28030  nvpi  28047  smcnlem  28077  ipval3  28089  ipdirilem  28209  ipasslem2  28212  ipasslem4  28214  ipasslem5  28215  ipasslem10  28219  ipasslem11  28220  minvecolem2  28256  hlmulass  28287
  Copyright terms: Public domain W3C validator