MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvsass Structured version   Visualization version   GIF version

Theorem nvsass 29039
Description: Associative law for the scalar product of a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1 𝑋 = (BaseSet‘𝑈)
nvscl.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvsass ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))

Proof of Theorem nvsass
StepHypRef Expression
1 eqid 2736 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 29026 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 eqid 2736 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
43vafval 29014 . . 3 ( +𝑣𝑈) = (1st ‘(1st𝑈))
5 nvscl.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 29016 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvscl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 29015 . . 3 𝑋 = ran ( +𝑣𝑈)
94, 6, 8vcass 28978 . 2 (((1st𝑈) ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))
102, 9sylan 581 1 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  1st c1st 7861  cc 10919   · cmul 10926  CVecOLDcvc 28969  NrmCVeccnv 28995   +𝑣 cpv 28996  BaseSetcba 28997   ·𝑠OLD cns 28998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-1st 7863  df-2nd 7864  df-vc 28970  df-nv 29003  df-va 29006  df-ba 29007  df-sm 29008  df-0v 29009  df-nmcv 29011
This theorem is referenced by:  nvscom  29040  nvmul0or  29061  nvpi  29078  smcnlem  29108  ipval3  29120  ipdirilem  29240  ipasslem2  29243  ipasslem4  29245  ipasslem5  29246  ipasslem10  29250  ipasslem11  29251  minvecolem2  29286  hlmulass  29317
  Copyright terms: Public domain W3C validator