| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvsass | Structured version Visualization version GIF version | ||
| Description: Associative law for the scalar product of a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvscl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvscl.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| Ref | Expression |
|---|---|
| nvsass | ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
| 2 | 1 | nvvc 30634 | . 2 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
| 3 | eqid 2737 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 4 | 3 | vafval 30622 | . . 3 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
| 5 | nvscl.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 6 | 5 | smfval 30624 | . . 3 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
| 7 | nvscl.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 8 | 7, 3 | bafval 30623 | . . 3 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
| 9 | 4, 6, 8 | vcass 30586 | . 2 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))) |
| 10 | 2, 9 | sylan 580 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 1st c1st 8012 ℂcc 11153 · cmul 11160 CVecOLDcvc 30577 NrmCVeccnv 30603 +𝑣 cpv 30604 BaseSetcba 30605 ·𝑠OLD cns 30606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-1st 8014 df-2nd 8015 df-vc 30578 df-nv 30611 df-va 30614 df-ba 30615 df-sm 30616 df-0v 30617 df-nmcv 30619 |
| This theorem is referenced by: nvscom 30648 nvmul0or 30669 nvpi 30686 smcnlem 30716 ipval3 30728 ipdirilem 30848 ipasslem2 30851 ipasslem4 30853 ipasslem5 30854 ipasslem10 30858 ipasslem11 30859 minvecolem2 30894 hlmulass 30925 |
| Copyright terms: Public domain | W3C validator |