Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wdomen1 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
wdomen1 | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensym 8829 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
2 | endom 8805 | . . . 4 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
3 | domwdom 9391 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ≼* 𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼* 𝐴) |
5 | wdomtr 9392 | . . 3 ⊢ ((𝐵 ≼* 𝐴 ∧ 𝐴 ≼* 𝐶) → 𝐵 ≼* 𝐶) | |
6 | 4, 5 | sylan 580 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ≼* 𝐶) → 𝐵 ≼* 𝐶) |
7 | endom 8805 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
8 | domwdom 9391 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼* 𝐵) |
10 | wdomtr 9392 | . . 3 ⊢ ((𝐴 ≼* 𝐵 ∧ 𝐵 ≼* 𝐶) → 𝐴 ≼* 𝐶) | |
11 | 9, 10 | sylan 580 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼* 𝐶) → 𝐴 ≼* 𝐶) |
12 | 6, 11 | impbida 798 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 class class class wbr 5080 ≈ cen 8766 ≼ cdom 8767 ≼* cwdom 9381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 ax-un 7621 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3357 df-v 3438 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4844 df-br 5081 df-opab 5143 df-mpt 5164 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-er 8534 df-en 8770 df-dom 8771 df-sdom 8772 df-wdom 9382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |