![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdomen1 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
wdomen1 | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensym 8999 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
2 | endom 8975 | . . . 4 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
3 | domwdom 9569 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ≼* 𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼* 𝐴) |
5 | wdomtr 9570 | . . 3 ⊢ ((𝐵 ≼* 𝐴 ∧ 𝐴 ≼* 𝐶) → 𝐵 ≼* 𝐶) | |
6 | 4, 5 | sylan 581 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ≼* 𝐶) → 𝐵 ≼* 𝐶) |
7 | endom 8975 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
8 | domwdom 9569 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼* 𝐵) |
10 | wdomtr 9570 | . . 3 ⊢ ((𝐴 ≼* 𝐵 ∧ 𝐵 ≼* 𝐶) → 𝐴 ≼* 𝐶) | |
11 | 9, 10 | sylan 581 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼* 𝐶) → 𝐴 ≼* 𝐶) |
12 | 6, 11 | impbida 800 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 class class class wbr 5149 ≈ cen 8936 ≼ cdom 8937 ≼* cwdom 9559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-wdom 9560 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |