| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wdomen1 | Structured version Visualization version GIF version | ||
| Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| wdomen1 | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym 8976 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 2 | endom 8952 | . . . 4 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
| 3 | domwdom 9533 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ≼* 𝐴) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼* 𝐴) |
| 5 | wdomtr 9534 | . . 3 ⊢ ((𝐵 ≼* 𝐴 ∧ 𝐴 ≼* 𝐶) → 𝐵 ≼* 𝐶) | |
| 6 | 4, 5 | sylan 580 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ≼* 𝐶) → 𝐵 ≼* 𝐶) |
| 7 | endom 8952 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 8 | domwdom 9533 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼* 𝐵) |
| 10 | wdomtr 9534 | . . 3 ⊢ ((𝐴 ≼* 𝐵 ∧ 𝐵 ≼* 𝐶) → 𝐴 ≼* 𝐶) | |
| 11 | 9, 10 | sylan 580 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼* 𝐶) → 𝐴 ≼* 𝐶) |
| 12 | 6, 11 | impbida 800 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 class class class wbr 5109 ≈ cen 8917 ≼ cdom 8918 ≼* cwdom 9523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-wdom 9524 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |