![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdomen1 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
wdomen1 | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensym 8290 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
2 | endom 8268 | . . . 4 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
3 | domwdom 8768 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ≼* 𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼* 𝐴) |
5 | wdomtr 8769 | . . 3 ⊢ ((𝐵 ≼* 𝐴 ∧ 𝐴 ≼* 𝐶) → 𝐵 ≼* 𝐶) | |
6 | 4, 5 | sylan 575 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ≼* 𝐶) → 𝐵 ≼* 𝐶) |
7 | endom 8268 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
8 | domwdom 8768 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼* 𝐵) |
10 | wdomtr 8769 | . . 3 ⊢ ((𝐴 ≼* 𝐵 ∧ 𝐵 ≼* 𝐶) → 𝐴 ≼* 𝐶) | |
11 | 9, 10 | sylan 575 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼* 𝐶) → 𝐴 ≼* 𝐶) |
12 | 6, 11 | impbida 791 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 class class class wbr 4886 ≈ cen 8238 ≼ cdom 8239 ≼* cwdom 8751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-wdom 8753 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |