Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wdomen2 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
wdomen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝐶 ≼* 𝐴 → 𝐶 ≼* 𝐴) | |
2 | endom 8789 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
3 | domwdom 9361 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼* 𝐵) |
5 | wdomtr 9362 | . . 3 ⊢ ((𝐶 ≼* 𝐴 ∧ 𝐴 ≼* 𝐵) → 𝐶 ≼* 𝐵) | |
6 | 1, 4, 5 | syl2anr 596 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼* 𝐴) → 𝐶 ≼* 𝐵) |
7 | id 22 | . . 3 ⊢ (𝐶 ≼* 𝐵 → 𝐶 ≼* 𝐵) | |
8 | ensym 8813 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
9 | endom 8789 | . . . 4 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
10 | domwdom 9361 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ≼* 𝐴) | |
11 | 8, 9, 10 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼* 𝐴) |
12 | wdomtr 9362 | . . 3 ⊢ ((𝐶 ≼* 𝐵 ∧ 𝐵 ≼* 𝐴) → 𝐶 ≼* 𝐴) | |
13 | 7, 11, 12 | syl2anr 596 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼* 𝐵) → 𝐶 ≼* 𝐴) |
14 | 6, 13 | impbida 797 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 class class class wbr 5077 ≈ cen 8750 ≼ cdom 8751 ≼* cwdom 9351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-wdom 9352 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |