MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomen2 Structured version   Visualization version   GIF version

Theorem wdomen2 9599
Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
wdomen2 (𝐴𝐵 → (𝐶* 𝐴𝐶* 𝐵))

Proof of Theorem wdomen2
StepHypRef Expression
1 id 22 . . 3 (𝐶* 𝐴𝐶* 𝐴)
2 endom 9001 . . . 4 (𝐴𝐵𝐴𝐵)
3 domwdom 9596 . . . 4 (𝐴𝐵𝐴* 𝐵)
42, 3syl 17 . . 3 (𝐴𝐵𝐴* 𝐵)
5 wdomtr 9597 . . 3 ((𝐶* 𝐴𝐴* 𝐵) → 𝐶* 𝐵)
61, 4, 5syl2anr 597 . 2 ((𝐴𝐵𝐶* 𝐴) → 𝐶* 𝐵)
7 id 22 . . 3 (𝐶* 𝐵𝐶* 𝐵)
8 ensym 9025 . . . 4 (𝐴𝐵𝐵𝐴)
9 endom 9001 . . . 4 (𝐵𝐴𝐵𝐴)
10 domwdom 9596 . . . 4 (𝐵𝐴𝐵* 𝐴)
118, 9, 103syl 18 . . 3 (𝐴𝐵𝐵* 𝐴)
12 wdomtr 9597 . . 3 ((𝐶* 𝐵𝐵* 𝐴) → 𝐶* 𝐴)
137, 11, 12syl2anr 597 . 2 ((𝐴𝐵𝐶* 𝐵) → 𝐶* 𝐴)
146, 13impbida 800 1 (𝐴𝐵 → (𝐶* 𝐴𝐶* 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   class class class wbr 5123  cen 8964  cdom 8965  * cwdom 9586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-wdom 9587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator