MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomen2 Structured version   Visualization version   GIF version

Theorem wdomen2 9364
Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
wdomen2 (𝐴𝐵 → (𝐶* 𝐴𝐶* 𝐵))

Proof of Theorem wdomen2
StepHypRef Expression
1 id 22 . . 3 (𝐶* 𝐴𝐶* 𝐴)
2 endom 8789 . . . 4 (𝐴𝐵𝐴𝐵)
3 domwdom 9361 . . . 4 (𝐴𝐵𝐴* 𝐵)
42, 3syl 17 . . 3 (𝐴𝐵𝐴* 𝐵)
5 wdomtr 9362 . . 3 ((𝐶* 𝐴𝐴* 𝐵) → 𝐶* 𝐵)
61, 4, 5syl2anr 596 . 2 ((𝐴𝐵𝐶* 𝐴) → 𝐶* 𝐵)
7 id 22 . . 3 (𝐶* 𝐵𝐶* 𝐵)
8 ensym 8813 . . . 4 (𝐴𝐵𝐵𝐴)
9 endom 8789 . . . 4 (𝐵𝐴𝐵𝐴)
10 domwdom 9361 . . . 4 (𝐵𝐴𝐵* 𝐴)
118, 9, 103syl 18 . . 3 (𝐴𝐵𝐵* 𝐴)
12 wdomtr 9362 . . 3 ((𝐶* 𝐵𝐵* 𝐴) → 𝐶* 𝐴)
137, 11, 12syl2anr 596 . 2 ((𝐴𝐵𝐶* 𝐵) → 𝐶* 𝐴)
146, 13impbida 797 1 (𝐴𝐵 → (𝐶* 𝐴𝐶* 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   class class class wbr 5077  cen 8750  cdom 8751  * cwdom 9351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-wdom 9352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator