![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdomen2 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
wdomen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝐶 ≼* 𝐴 → 𝐶 ≼* 𝐴) | |
2 | endom 8981 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
3 | domwdom 9575 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼* 𝐵) |
5 | wdomtr 9576 | . . 3 ⊢ ((𝐶 ≼* 𝐴 ∧ 𝐴 ≼* 𝐵) → 𝐶 ≼* 𝐵) | |
6 | 1, 4, 5 | syl2anr 596 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼* 𝐴) → 𝐶 ≼* 𝐵) |
7 | id 22 | . . 3 ⊢ (𝐶 ≼* 𝐵 → 𝐶 ≼* 𝐵) | |
8 | ensym 9005 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
9 | endom 8981 | . . . 4 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
10 | domwdom 9575 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ≼* 𝐴) | |
11 | 8, 9, 10 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼* 𝐴) |
12 | wdomtr 9576 | . . 3 ⊢ ((𝐶 ≼* 𝐵 ∧ 𝐵 ≼* 𝐴) → 𝐶 ≼* 𝐴) | |
13 | 7, 11, 12 | syl2anr 596 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼* 𝐵) → 𝐶 ≼* 𝐴) |
14 | 6, 13 | impbida 798 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 class class class wbr 5148 ≈ cen 8942 ≼ cdom 8943 ≼* cwdom 9565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-wdom 9566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |