MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomen2 Structured version   Visualization version   GIF version

Theorem wdomen2 9578
Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
wdomen2 (𝐴𝐵 → (𝐶* 𝐴𝐶* 𝐵))

Proof of Theorem wdomen2
StepHypRef Expression
1 id 22 . . 3 (𝐶* 𝐴𝐶* 𝐴)
2 endom 8981 . . . 4 (𝐴𝐵𝐴𝐵)
3 domwdom 9575 . . . 4 (𝐴𝐵𝐴* 𝐵)
42, 3syl 17 . . 3 (𝐴𝐵𝐴* 𝐵)
5 wdomtr 9576 . . 3 ((𝐶* 𝐴𝐴* 𝐵) → 𝐶* 𝐵)
61, 4, 5syl2anr 596 . 2 ((𝐴𝐵𝐶* 𝐴) → 𝐶* 𝐵)
7 id 22 . . 3 (𝐶* 𝐵𝐶* 𝐵)
8 ensym 9005 . . . 4 (𝐴𝐵𝐵𝐴)
9 endom 8981 . . . 4 (𝐵𝐴𝐵𝐴)
10 domwdom 9575 . . . 4 (𝐵𝐴𝐵* 𝐴)
118, 9, 103syl 18 . . 3 (𝐴𝐵𝐵* 𝐴)
12 wdomtr 9576 . . 3 ((𝐶* 𝐵𝐵* 𝐴) → 𝐶* 𝐴)
137, 11, 12syl2anr 596 . 2 ((𝐴𝐵𝐶* 𝐵) → 𝐶* 𝐴)
146, 13impbida 798 1 (𝐴𝐵 → (𝐶* 𝐴𝐶* 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   class class class wbr 5148  cen 8942  cdom 8943  * cwdom 9565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-wdom 9566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator