| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wdomen2 | Structured version Visualization version GIF version | ||
| Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| wdomen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝐶 ≼* 𝐴 → 𝐶 ≼* 𝐴) | |
| 2 | endom 8927 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 3 | domwdom 9503 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼* 𝐵) |
| 5 | wdomtr 9504 | . . 3 ⊢ ((𝐶 ≼* 𝐴 ∧ 𝐴 ≼* 𝐵) → 𝐶 ≼* 𝐵) | |
| 6 | 1, 4, 5 | syl2anr 597 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼* 𝐴) → 𝐶 ≼* 𝐵) |
| 7 | id 22 | . . 3 ⊢ (𝐶 ≼* 𝐵 → 𝐶 ≼* 𝐵) | |
| 8 | ensym 8951 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 9 | endom 8927 | . . . 4 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
| 10 | domwdom 9503 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ≼* 𝐴) | |
| 11 | 8, 9, 10 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼* 𝐴) |
| 12 | wdomtr 9504 | . . 3 ⊢ ((𝐶 ≼* 𝐵 ∧ 𝐵 ≼* 𝐴) → 𝐶 ≼* 𝐴) | |
| 13 | 7, 11, 12 | syl2anr 597 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼* 𝐵) → 𝐶 ≼* 𝐴) |
| 14 | 6, 13 | impbida 800 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 class class class wbr 5102 ≈ cen 8892 ≼ cdom 8893 ≼* cwdom 9493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-wdom 9494 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |