Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wdomen2 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
wdomen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝐶 ≼* 𝐴 → 𝐶 ≼* 𝐴) | |
2 | endom 8568 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
3 | domwdom 9085 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼* 𝐵) |
5 | wdomtr 9086 | . . 3 ⊢ ((𝐶 ≼* 𝐴 ∧ 𝐴 ≼* 𝐵) → 𝐶 ≼* 𝐵) | |
6 | 1, 4, 5 | syl2anr 599 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼* 𝐴) → 𝐶 ≼* 𝐵) |
7 | id 22 | . . 3 ⊢ (𝐶 ≼* 𝐵 → 𝐶 ≼* 𝐵) | |
8 | ensym 8590 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
9 | endom 8568 | . . . 4 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
10 | domwdom 9085 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ≼* 𝐴) | |
11 | 8, 9, 10 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼* 𝐴) |
12 | wdomtr 9086 | . . 3 ⊢ ((𝐶 ≼* 𝐵 ∧ 𝐵 ≼* 𝐴) → 𝐶 ≼* 𝐴) | |
13 | 7, 11, 12 | syl2anr 599 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼* 𝐵) → 𝐶 ≼* 𝐴) |
14 | 6, 13 | impbida 800 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 class class class wbr 5037 ≈ cen 8538 ≼ cdom 8539 ≼* cwdom 9075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-wdom 9076 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |