MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomimag Structured version   Visualization version   GIF version

Theorem wdomimag 8768
Description: A set is weakly dominant over its image under any function. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
wdomimag ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ≼* 𝐴)

Proof of Theorem wdomimag
StepHypRef Expression
1 funimaexg 6212 . 2 ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ∈ V)
2 wdomima2g 8767 . 2 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ V) → (𝐹𝐴) ≼* 𝐴)
31, 2mpd3an3 1590 1 ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ≼* 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2164  Vcvv 3414   class class class wbr 4875  cima 5349  Fun wfun 6121  * cwdom 8738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-wdom 8740
This theorem is referenced by:  hsmexlem4  9573
  Copyright terms: Public domain W3C validator