![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdomimag | Structured version Visualization version GIF version |
Description: A set is weakly dominant over its image under any function. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
wdomimag | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ≼* 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimaexg 6634 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ∈ V) | |
2 | wdomima2g 9580 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ (𝐹 “ 𝐴) ∈ V) → (𝐹 “ 𝐴) ≼* 𝐴) | |
3 | 1, 2 | mpd3an3 1462 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ≼* 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 class class class wbr 5148 “ cima 5679 Fun wfun 6537 ≼* cwdom 9558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-en 8939 df-dom 8940 df-sdom 8941 df-wdom 9559 |
This theorem is referenced by: hsmexlem4 10423 |
Copyright terms: Public domain | W3C validator |