Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0ge0 Structured version   Visualization version   GIF version

Theorem xrge0ge0 45336
Description: A nonnegative extended real is nonnegative. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
xrge0ge0 (𝐴 ∈ (0[,]+∞) → 0 ≤ 𝐴)

Proof of Theorem xrge0ge0
StepHypRef Expression
1 elxrge0 13424 . . 3 (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴))
21biimpi 216 . 2 (𝐴 ∈ (0[,]+∞) → (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴))
32simprd 495 1 (𝐴 ∈ (0[,]+∞) → 0 ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5109  (class class class)co 7389  0cc0 11074  +∞cpnf 11211  *cxr 11213  cle 11215  [,]cicc 13315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-addrcl 11135  ax-rnegex 11145  ax-cnre 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-icc 13319
This theorem is referenced by:  sge0xaddlem1  46424  sge0xaddlem2  46425  ovnsubaddlem1  46561
  Copyright terms: Public domain W3C validator