| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
| 2 | 0xr 11166 | . . 3 ⊢ 0 ∈ ℝ* | |
| 3 | pnfxr 11173 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | elicc1 13291 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
| 6 | pnfge 13031 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
| 8 | 7 | pm4.71i 559 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
| 9 | 1, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 0cc0 11013 +∞cpnf 11150 ℝ*cxr 11152 ≤ cle 11154 [,]cicc 13250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-addrcl 11074 ax-rnegex 11084 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-icc 13254 |
| This theorem is referenced by: 0e0iccpnf 13361 ge0xaddcl 13364 ge0xmulcl 13365 xnn0xrge0 13408 xrge0subm 21382 psmetxrge0 24229 isxmet2d 24243 prdsdsf 24283 prdsxmetlem 24284 comet 24429 stdbdxmet 24431 xrge0gsumle 24750 xrge0tsms 24751 metdsf 24765 metds0 24767 metdstri 24768 metdsre 24770 metdseq0 24771 metdscnlem 24772 metnrmlem1a 24775 xrhmeo 24872 lebnumlem1 24888 xrge0f 25660 itg2const2 25670 itg2uba 25672 itg2mono 25682 itg2gt0 25689 itg2cnlem2 25691 itg2cn 25692 iblss 25734 itgle 25739 itgeqa 25743 ibladdlem 25749 iblabs 25758 iblabsr 25759 iblmulc2 25760 itgsplit 25765 bddmulibl 25768 bddiblnc 25771 xrge0addge 32745 xrge0infss 32747 xrge0addcld 32749 xrge0subcld 32750 xrge00 33002 xrge0tsmsd 33049 fldextrspundglemul 33713 esummono 34088 gsumesum 34093 esumsnf 34098 esumrnmpt2 34102 esumpmono 34113 hashf2 34118 measge0 34241 measle0 34242 measssd 34249 measunl 34250 omssubaddlem 34333 omssubadd 34334 carsgsigalem 34349 pmeasmono 34358 sibfinima 34373 prob01 34447 dstrvprob 34506 itg2addnclem 37731 ibladdnclem 37736 iblabsnc 37744 iblmulc2nc 37745 ftc1anclem4 37756 ftc1anclem5 37757 ftc1anclem6 37758 ftc1anclem7 37759 ftc1anclem8 37760 ftc1anc 37761 xrge0ge0 45470 rrxsphere 48873 |
| Copyright terms: Public domain | W3C validator |