Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version |
Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
2 | 0xr 11022 | . . 3 ⊢ 0 ∈ ℝ* | |
3 | pnfxr 11029 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | elicc1 13123 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
5 | 2, 3, 4 | mp2an 689 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
6 | pnfge 12866 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
8 | 7 | pm4.71i 560 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
9 | 1, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 ≤ cle 11010 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-addrcl 10932 ax-rnegex 10942 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-icc 13086 |
This theorem is referenced by: 0e0iccpnf 13191 ge0xaddcl 13194 ge0xmulcl 13195 xnn0xrge0 13238 xrge0subm 20639 psmetxrge0 23466 isxmet2d 23480 prdsdsf 23520 prdsxmetlem 23521 comet 23669 stdbdxmet 23671 xrge0gsumle 23996 xrge0tsms 23997 metdsf 24011 metds0 24013 metdstri 24014 metdsre 24016 metdseq0 24017 metdscnlem 24018 metnrmlem1a 24021 xrhmeo 24109 lebnumlem1 24124 xrge0f 24896 itg2const2 24906 itg2uba 24908 itg2mono 24918 itg2gt0 24925 itg2cnlem2 24927 itg2cn 24928 iblss 24969 itgle 24974 itgeqa 24978 ibladdlem 24984 iblabs 24993 iblabsr 24994 iblmulc2 24995 itgsplit 25000 bddmulibl 25003 bddiblnc 25006 xrge0addge 31080 xrge0infss 31083 xrge0addcld 31085 xrge0subcld 31086 xrge00 31295 xrge0tsmsd 31317 esummono 32022 gsumesum 32027 esumsnf 32032 esumrnmpt2 32036 esumpmono 32047 hashf2 32052 measge0 32175 measle0 32176 measssd 32183 measunl 32184 omssubaddlem 32266 omssubadd 32267 carsgsigalem 32282 pmeasmono 32291 sibfinima 32306 prob01 32380 dstrvprob 32438 itg2addnclem 35828 ibladdnclem 35833 iblabsnc 35841 iblmulc2nc 35842 ftc1anclem4 35853 ftc1anclem5 35854 ftc1anclem6 35855 ftc1anclem7 35856 ftc1anclem8 35857 ftc1anc 35858 xrge0ge0 42886 rrxsphere 46094 |
Copyright terms: Public domain | W3C validator |