| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
| 2 | 0xr 11156 | . . 3 ⊢ 0 ∈ ℝ* | |
| 3 | pnfxr 11163 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | elicc1 13286 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
| 6 | pnfge 13026 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
| 8 | 7 | pm4.71i 559 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
| 9 | 1, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 0cc0 11003 +∞cpnf 11140 ℝ*cxr 11142 ≤ cle 11144 [,]cicc 13245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-addrcl 11064 ax-rnegex 11074 ax-cnre 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-icc 13249 |
| This theorem is referenced by: 0e0iccpnf 13356 ge0xaddcl 13359 ge0xmulcl 13360 xnn0xrge0 13403 xrge0subm 21378 psmetxrge0 24226 isxmet2d 24240 prdsdsf 24280 prdsxmetlem 24281 comet 24426 stdbdxmet 24428 xrge0gsumle 24747 xrge0tsms 24748 metdsf 24762 metds0 24764 metdstri 24765 metdsre 24767 metdseq0 24768 metdscnlem 24769 metnrmlem1a 24772 xrhmeo 24869 lebnumlem1 24885 xrge0f 25657 itg2const2 25667 itg2uba 25669 itg2mono 25679 itg2gt0 25686 itg2cnlem2 25688 itg2cn 25689 iblss 25731 itgle 25736 itgeqa 25740 ibladdlem 25746 iblabs 25755 iblabsr 25756 iblmulc2 25757 itgsplit 25762 bddmulibl 25765 bddiblnc 25768 xrge0addge 32736 xrge0infss 32738 xrge0addcld 32740 xrge0subcld 32741 xrge00 32990 xrge0tsmsd 33037 fldextrspundglemul 33687 esummono 34062 gsumesum 34067 esumsnf 34072 esumrnmpt2 34076 esumpmono 34087 hashf2 34092 measge0 34215 measle0 34216 measssd 34223 measunl 34224 omssubaddlem 34307 omssubadd 34308 carsgsigalem 34323 pmeasmono 34332 sibfinima 34347 prob01 34421 dstrvprob 34480 itg2addnclem 37710 ibladdnclem 37715 iblabsnc 37723 iblmulc2nc 37724 ftc1anclem4 37735 ftc1anclem5 37736 ftc1anclem6 37737 ftc1anclem7 37738 ftc1anclem8 37739 ftc1anc 37740 xrge0ge0 45385 rrxsphere 48779 |
| Copyright terms: Public domain | W3C validator |