![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version |
Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1087 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
2 | 0xr 11277 | . . 3 ⊢ 0 ∈ ℝ* | |
3 | pnfxr 11284 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | elicc1 13386 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
5 | 2, 3, 4 | mp2an 691 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
6 | pnfge 13128 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
8 | 7 | pm4.71i 559 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
9 | 1, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 class class class wbr 5142 (class class class)co 7414 0cc0 11124 +∞cpnf 11261 ℝ*cxr 11263 ≤ cle 11265 [,]cicc 13345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-addrcl 11185 ax-rnegex 11195 ax-cnre 11197 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-icc 13349 |
This theorem is referenced by: 0e0iccpnf 13454 ge0xaddcl 13457 ge0xmulcl 13458 xnn0xrge0 13501 xrge0subm 21320 psmetxrge0 24193 isxmet2d 24207 prdsdsf 24247 prdsxmetlem 24248 comet 24396 stdbdxmet 24398 xrge0gsumle 24723 xrge0tsms 24724 metdsf 24738 metds0 24740 metdstri 24741 metdsre 24743 metdseq0 24744 metdscnlem 24745 metnrmlem1a 24748 xrhmeo 24845 lebnumlem1 24861 xrge0f 25635 itg2const2 25645 itg2uba 25647 itg2mono 25657 itg2gt0 25664 itg2cnlem2 25666 itg2cn 25667 iblss 25708 itgle 25713 itgeqa 25717 ibladdlem 25723 iblabs 25732 iblabsr 25733 iblmulc2 25734 itgsplit 25739 bddmulibl 25742 bddiblnc 25745 xrge0addge 32498 xrge0infss 32501 xrge0addcld 32503 xrge0subcld 32504 xrge00 32711 xrge0tsmsd 32736 esummono 33596 gsumesum 33601 esumsnf 33606 esumrnmpt2 33610 esumpmono 33621 hashf2 33626 measge0 33749 measle0 33750 measssd 33757 measunl 33758 omssubaddlem 33842 omssubadd 33843 carsgsigalem 33858 pmeasmono 33867 sibfinima 33882 prob01 33956 dstrvprob 34014 itg2addnclem 37066 ibladdnclem 37071 iblabsnc 37079 iblmulc2nc 37080 ftc1anclem4 37091 ftc1anclem5 37092 ftc1anclem6 37093 ftc1anclem7 37094 ftc1anclem8 37095 ftc1anc 37096 xrge0ge0 44642 rrxsphere 47734 |
Copyright terms: Public domain | W3C validator |