| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
| 2 | 0xr 11228 | . . 3 ⊢ 0 ∈ ℝ* | |
| 3 | pnfxr 11235 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | elicc1 13357 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
| 6 | pnfge 13097 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
| 8 | 7 | pm4.71i 559 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
| 9 | 1, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 0cc0 11075 +∞cpnf 11212 ℝ*cxr 11214 ≤ cle 11216 [,]cicc 13316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-icc 13320 |
| This theorem is referenced by: 0e0iccpnf 13427 ge0xaddcl 13430 ge0xmulcl 13431 xnn0xrge0 13474 xrge0subm 21331 psmetxrge0 24208 isxmet2d 24222 prdsdsf 24262 prdsxmetlem 24263 comet 24408 stdbdxmet 24410 xrge0gsumle 24729 xrge0tsms 24730 metdsf 24744 metds0 24746 metdstri 24747 metdsre 24749 metdseq0 24750 metdscnlem 24751 metnrmlem1a 24754 xrhmeo 24851 lebnumlem1 24867 xrge0f 25639 itg2const2 25649 itg2uba 25651 itg2mono 25661 itg2gt0 25668 itg2cnlem2 25670 itg2cn 25671 iblss 25713 itgle 25718 itgeqa 25722 ibladdlem 25728 iblabs 25737 iblabsr 25738 iblmulc2 25739 itgsplit 25744 bddmulibl 25747 bddiblnc 25750 xrge0addge 32688 xrge0infss 32690 xrge0addcld 32692 xrge0subcld 32693 xrge00 32960 xrge0tsmsd 33009 fldextrspundglemul 33681 esummono 34051 gsumesum 34056 esumsnf 34061 esumrnmpt2 34065 esumpmono 34076 hashf2 34081 measge0 34204 measle0 34205 measssd 34212 measunl 34213 omssubaddlem 34297 omssubadd 34298 carsgsigalem 34313 pmeasmono 34322 sibfinima 34337 prob01 34411 dstrvprob 34470 itg2addnclem 37672 ibladdnclem 37677 iblabsnc 37685 iblmulc2nc 37686 ftc1anclem4 37697 ftc1anclem5 37698 ftc1anclem6 37699 ftc1anclem7 37700 ftc1anclem8 37701 ftc1anc 37702 xrge0ge0 45350 rrxsphere 48741 |
| Copyright terms: Public domain | W3C validator |