![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version |
Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
2 | 0xr 11305 | . . 3 ⊢ 0 ∈ ℝ* | |
3 | pnfxr 11312 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | elicc1 13427 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
6 | pnfge 13169 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
8 | 7 | pm4.71i 559 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
9 | 1, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5147 (class class class)co 7430 0cc0 11152 +∞cpnf 11289 ℝ*cxr 11291 ≤ cle 11293 [,]cicc 13386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-addrcl 11213 ax-rnegex 11223 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-icc 13390 |
This theorem is referenced by: 0e0iccpnf 13495 ge0xaddcl 13498 ge0xmulcl 13499 xnn0xrge0 13542 xrge0subm 21442 psmetxrge0 24338 isxmet2d 24352 prdsdsf 24392 prdsxmetlem 24393 comet 24541 stdbdxmet 24543 xrge0gsumle 24868 xrge0tsms 24869 metdsf 24883 metds0 24885 metdstri 24886 metdsre 24888 metdseq0 24889 metdscnlem 24890 metnrmlem1a 24893 xrhmeo 24990 lebnumlem1 25006 xrge0f 25780 itg2const2 25790 itg2uba 25792 itg2mono 25802 itg2gt0 25809 itg2cnlem2 25811 itg2cn 25812 iblss 25854 itgle 25859 itgeqa 25863 ibladdlem 25869 iblabs 25878 iblabsr 25879 iblmulc2 25880 itgsplit 25885 bddmulibl 25888 bddiblnc 25891 xrge0addge 32767 xrge0infss 32770 xrge0addcld 32772 xrge0subcld 32773 xrge00 32999 xrge0tsmsd 33047 esummono 34034 gsumesum 34039 esumsnf 34044 esumrnmpt2 34048 esumpmono 34059 hashf2 34064 measge0 34187 measle0 34188 measssd 34195 measunl 34196 omssubaddlem 34280 omssubadd 34281 carsgsigalem 34296 pmeasmono 34305 sibfinima 34320 prob01 34394 dstrvprob 34452 itg2addnclem 37657 ibladdnclem 37662 iblabsnc 37670 iblmulc2nc 37671 ftc1anclem4 37682 ftc1anclem5 37683 ftc1anclem6 37684 ftc1anclem7 37685 ftc1anclem8 37686 ftc1anc 37687 xrge0ge0 45296 rrxsphere 48597 |
Copyright terms: Public domain | W3C validator |