| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
| 2 | 0xr 11181 | . . 3 ⊢ 0 ∈ ℝ* | |
| 3 | pnfxr 11188 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | elicc1 13310 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
| 6 | pnfge 13050 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
| 8 | 7 | pm4.71i 559 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
| 9 | 1, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 0cc0 11028 +∞cpnf 11165 ℝ*cxr 11167 ≤ cle 11169 [,]cicc 13269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-addrcl 11089 ax-rnegex 11099 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-icc 13273 |
| This theorem is referenced by: 0e0iccpnf 13380 ge0xaddcl 13383 ge0xmulcl 13384 xnn0xrge0 13427 xrge0subm 21368 psmetxrge0 24217 isxmet2d 24231 prdsdsf 24271 prdsxmetlem 24272 comet 24417 stdbdxmet 24419 xrge0gsumle 24738 xrge0tsms 24739 metdsf 24753 metds0 24755 metdstri 24756 metdsre 24758 metdseq0 24759 metdscnlem 24760 metnrmlem1a 24763 xrhmeo 24860 lebnumlem1 24876 xrge0f 25648 itg2const2 25658 itg2uba 25660 itg2mono 25670 itg2gt0 25677 itg2cnlem2 25679 itg2cn 25680 iblss 25722 itgle 25727 itgeqa 25731 ibladdlem 25737 iblabs 25746 iblabsr 25747 iblmulc2 25748 itgsplit 25753 bddmulibl 25756 bddiblnc 25759 xrge0addge 32714 xrge0infss 32716 xrge0addcld 32718 xrge0subcld 32719 xrge00 32981 xrge0tsmsd 33028 fldextrspundglemul 33650 esummono 34020 gsumesum 34025 esumsnf 34030 esumrnmpt2 34034 esumpmono 34045 hashf2 34050 measge0 34173 measle0 34174 measssd 34181 measunl 34182 omssubaddlem 34266 omssubadd 34267 carsgsigalem 34282 pmeasmono 34291 sibfinima 34306 prob01 34380 dstrvprob 34439 itg2addnclem 37650 ibladdnclem 37655 iblabsnc 37663 iblmulc2nc 37664 ftc1anclem4 37675 ftc1anclem5 37676 ftc1anclem6 37677 ftc1anclem7 37678 ftc1anclem8 37679 ftc1anc 37680 xrge0ge0 45327 rrxsphere 48734 |
| Copyright terms: Public domain | W3C validator |