Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version |
Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1089 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
2 | 0xr 11135 | . . 3 ⊢ 0 ∈ ℝ* | |
3 | pnfxr 11142 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | elicc1 13236 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
5 | 2, 3, 4 | mp2an 690 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
6 | pnfge 12979 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
7 | 6 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
8 | 7 | pm4.71i 561 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
9 | 1, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5103 (class class class)co 7349 0cc0 10984 +∞cpnf 11119 ℝ*cxr 11121 ≤ cle 11123 [,]cicc 13195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-addrcl 11045 ax-rnegex 11055 ax-cnre 11057 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-sbc 3738 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-opab 5166 df-id 5528 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-iota 6443 df-fun 6493 df-fv 6499 df-ov 7352 df-oprab 7353 df-mpo 7354 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-icc 13199 |
This theorem is referenced by: 0e0iccpnf 13304 ge0xaddcl 13307 ge0xmulcl 13308 xnn0xrge0 13351 xrge0subm 20752 psmetxrge0 23579 isxmet2d 23593 prdsdsf 23633 prdsxmetlem 23634 comet 23782 stdbdxmet 23784 xrge0gsumle 24109 xrge0tsms 24110 metdsf 24124 metds0 24126 metdstri 24127 metdsre 24129 metdseq0 24130 metdscnlem 24131 metnrmlem1a 24134 xrhmeo 24222 lebnumlem1 24237 xrge0f 25009 itg2const2 25019 itg2uba 25021 itg2mono 25031 itg2gt0 25038 itg2cnlem2 25040 itg2cn 25041 iblss 25082 itgle 25087 itgeqa 25091 ibladdlem 25097 iblabs 25106 iblabsr 25107 iblmulc2 25108 itgsplit 25113 bddmulibl 25116 bddiblnc 25119 xrge0addge 31434 xrge0infss 31437 xrge0addcld 31439 xrge0subcld 31440 xrge00 31649 xrge0tsmsd 31671 esummono 32387 gsumesum 32392 esumsnf 32397 esumrnmpt2 32401 esumpmono 32412 hashf2 32417 measge0 32540 measle0 32541 measssd 32548 measunl 32549 omssubaddlem 32633 omssubadd 32634 carsgsigalem 32649 pmeasmono 32658 sibfinima 32673 prob01 32747 dstrvprob 32805 itg2addnclem 35988 ibladdnclem 35993 iblabsnc 36001 iblmulc2nc 36002 ftc1anclem4 36013 ftc1anclem5 36014 ftc1anclem6 36015 ftc1anclem7 36016 ftc1anclem8 36017 ftc1anc 36018 xrge0ge0 43277 rrxsphere 46516 |
Copyright terms: Public domain | W3C validator |