| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
| 2 | 0xr 11221 | . . 3 ⊢ 0 ∈ ℝ* | |
| 3 | pnfxr 11228 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | elicc1 13350 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
| 6 | pnfge 13090 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
| 8 | 7 | pm4.71i 559 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
| 9 | 1, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 ≤ cle 11209 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-icc 13313 |
| This theorem is referenced by: 0e0iccpnf 13420 ge0xaddcl 13423 ge0xmulcl 13424 xnn0xrge0 13467 xrge0subm 21324 psmetxrge0 24201 isxmet2d 24215 prdsdsf 24255 prdsxmetlem 24256 comet 24401 stdbdxmet 24403 xrge0gsumle 24722 xrge0tsms 24723 metdsf 24737 metds0 24739 metdstri 24740 metdsre 24742 metdseq0 24743 metdscnlem 24744 metnrmlem1a 24747 xrhmeo 24844 lebnumlem1 24860 xrge0f 25632 itg2const2 25642 itg2uba 25644 itg2mono 25654 itg2gt0 25661 itg2cnlem2 25663 itg2cn 25664 iblss 25706 itgle 25711 itgeqa 25715 ibladdlem 25721 iblabs 25730 iblabsr 25731 iblmulc2 25732 itgsplit 25737 bddmulibl 25740 bddiblnc 25743 xrge0addge 32681 xrge0infss 32683 xrge0addcld 32685 xrge0subcld 32686 xrge00 32953 xrge0tsmsd 33002 fldextrspundglemul 33674 esummono 34044 gsumesum 34049 esumsnf 34054 esumrnmpt2 34058 esumpmono 34069 hashf2 34074 measge0 34197 measle0 34198 measssd 34205 measunl 34206 omssubaddlem 34290 omssubadd 34291 carsgsigalem 34306 pmeasmono 34315 sibfinima 34330 prob01 34404 dstrvprob 34463 itg2addnclem 37665 ibladdnclem 37670 iblabsnc 37678 iblmulc2nc 37679 ftc1anclem4 37690 ftc1anclem5 37691 ftc1anclem6 37692 ftc1anclem7 37693 ftc1anclem8 37694 ftc1anc 37695 xrge0ge0 45343 rrxsphere 48737 |
| Copyright terms: Public domain | W3C validator |