![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version |
Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1087 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
2 | 0xr 11265 | . . 3 ⊢ 0 ∈ ℝ* | |
3 | pnfxr 11272 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | elicc1 13372 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
5 | 2, 3, 4 | mp2an 688 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
6 | pnfge 13114 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
7 | 6 | adantr 479 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
8 | 7 | pm4.71i 558 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
9 | 1, 5, 8 | 3bitr4i 302 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1085 ∈ wcel 2104 class class class wbr 5147 (class class class)co 7411 0cc0 11112 +∞cpnf 11249 ℝ*cxr 11251 ≤ cle 11253 [,]cicc 13331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-addrcl 11173 ax-rnegex 11183 ax-cnre 11185 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-icc 13335 |
This theorem is referenced by: 0e0iccpnf 13440 ge0xaddcl 13443 ge0xmulcl 13444 xnn0xrge0 13487 xrge0subm 21186 psmetxrge0 24039 isxmet2d 24053 prdsdsf 24093 prdsxmetlem 24094 comet 24242 stdbdxmet 24244 xrge0gsumle 24569 xrge0tsms 24570 metdsf 24584 metds0 24586 metdstri 24587 metdsre 24589 metdseq0 24590 metdscnlem 24591 metnrmlem1a 24594 xrhmeo 24691 lebnumlem1 24707 xrge0f 25481 itg2const2 25491 itg2uba 25493 itg2mono 25503 itg2gt0 25510 itg2cnlem2 25512 itg2cn 25513 iblss 25554 itgle 25559 itgeqa 25563 ibladdlem 25569 iblabs 25578 iblabsr 25579 iblmulc2 25580 itgsplit 25585 bddmulibl 25588 bddiblnc 25591 xrge0addge 32237 xrge0infss 32240 xrge0addcld 32242 xrge0subcld 32243 xrge00 32454 xrge0tsmsd 32479 esummono 33350 gsumesum 33355 esumsnf 33360 esumrnmpt2 33364 esumpmono 33375 hashf2 33380 measge0 33503 measle0 33504 measssd 33511 measunl 33512 omssubaddlem 33596 omssubadd 33597 carsgsigalem 33612 pmeasmono 33621 sibfinima 33636 prob01 33710 dstrvprob 33768 itg2addnclem 36842 ibladdnclem 36847 iblabsnc 36855 iblmulc2nc 36856 ftc1anclem4 36867 ftc1anclem5 36868 ftc1anclem6 36869 ftc1anclem7 36870 ftc1anclem8 36871 ftc1anc 36872 xrge0ge0 44355 rrxsphere 47521 |
Copyright terms: Public domain | W3C validator |