![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version |
Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1110 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
2 | 0xr 10375 | . . 3 ⊢ 0 ∈ ℝ* | |
3 | pnfxr 10382 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | elicc1 12468 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
5 | 2, 3, 4 | mp2an 684 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
6 | pnfge 12211 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
7 | 6 | adantr 473 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
8 | 7 | pm4.71i 556 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
9 | 1, 5, 8 | 3bitr4i 295 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 class class class wbr 4843 (class class class)co 6878 0cc0 10224 +∞cpnf 10360 ℝ*cxr 10362 ≤ cle 10364 [,]cicc 12427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-addrcl 10285 ax-rnegex 10295 ax-cnre 10297 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-icc 12431 |
This theorem is referenced by: 0e0iccpnf 12534 ge0xaddcl 12537 ge0xmulcl 12538 xnn0xrge0 12579 xrge0subm 20109 psmetxrge0 22446 isxmet2d 22460 prdsdsf 22500 prdsxmetlem 22501 comet 22646 stdbdxmet 22648 xrge0gsumle 22964 xrge0tsms 22965 metdsf 22979 metds0 22981 metdstri 22982 metdsre 22984 metdseq0 22985 metdscnlem 22986 metnrmlem1a 22989 metnrmlem1 22990 xrhmeo 23073 lebnumlem1 23088 xrge0f 23839 itg2const2 23849 itg2uba 23851 itg2mono 23861 itg2gt0 23868 itg2cnlem2 23870 itg2cn 23871 iblss 23912 itgle 23917 itgeqa 23921 ibladdlem 23927 iblabs 23936 iblabsr 23937 iblmulc2 23938 itgsplit 23943 bddmulibl 23946 xrge0addge 30040 xrge0infss 30043 xrge0addcld 30045 xrge0subcld 30046 xrge00 30202 xrge0tsmsd 30301 esummono 30632 gsumesum 30637 esumsnf 30642 esumrnmpt2 30646 esumpmono 30657 hashf2 30662 measge0 30786 measle0 30787 measssd 30794 measunl 30795 omssubaddlem 30877 omssubadd 30878 carsgsigalem 30893 pmeasmono 30902 sibfinima 30917 prob01 30992 dstrvprob 31050 itg2addnclem 33949 ibladdnclem 33954 iblabsnc 33962 iblmulc2nc 33963 bddiblnc 33968 ftc1anclem4 33976 ftc1anclem5 33977 ftc1anclem6 33978 ftc1anclem7 33979 ftc1anclem8 33980 ftc1anc 33981 xrge0ge0 40307 |
Copyright terms: Public domain | W3C validator |