![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version |
Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1090 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
2 | 0xr 11261 | . . 3 ⊢ 0 ∈ ℝ* | |
3 | pnfxr 11268 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | elicc1 13368 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
5 | 2, 3, 4 | mp2an 691 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
6 | pnfge 13110 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
7 | 6 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
8 | 7 | pm4.71i 561 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
9 | 1, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 0cc0 11110 +∞cpnf 11245 ℝ*cxr 11247 ≤ cle 11249 [,]cicc 13327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-addrcl 11171 ax-rnegex 11181 ax-cnre 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-icc 13331 |
This theorem is referenced by: 0e0iccpnf 13436 ge0xaddcl 13439 ge0xmulcl 13440 xnn0xrge0 13483 xrge0subm 20986 psmetxrge0 23819 isxmet2d 23833 prdsdsf 23873 prdsxmetlem 23874 comet 24022 stdbdxmet 24024 xrge0gsumle 24349 xrge0tsms 24350 metdsf 24364 metds0 24366 metdstri 24367 metdsre 24369 metdseq0 24370 metdscnlem 24371 metnrmlem1a 24374 xrhmeo 24462 lebnumlem1 24477 xrge0f 25249 itg2const2 25259 itg2uba 25261 itg2mono 25271 itg2gt0 25278 itg2cnlem2 25280 itg2cn 25281 iblss 25322 itgle 25327 itgeqa 25331 ibladdlem 25337 iblabs 25346 iblabsr 25347 iblmulc2 25348 itgsplit 25353 bddmulibl 25356 bddiblnc 25359 xrge0addge 31970 xrge0infss 31973 xrge0addcld 31975 xrge0subcld 31976 xrge00 32187 xrge0tsmsd 32209 esummono 33052 gsumesum 33057 esumsnf 33062 esumrnmpt2 33066 esumpmono 33077 hashf2 33082 measge0 33205 measle0 33206 measssd 33213 measunl 33214 omssubaddlem 33298 omssubadd 33299 carsgsigalem 33314 pmeasmono 33323 sibfinima 33338 prob01 33412 dstrvprob 33470 itg2addnclem 36539 ibladdnclem 36544 iblabsnc 36552 iblmulc2nc 36553 ftc1anclem4 36564 ftc1anclem5 36565 ftc1anclem6 36566 ftc1anclem7 36567 ftc1anclem8 36568 ftc1anc 36569 xrge0ge0 44057 rrxsphere 47434 |
Copyright terms: Public domain | W3C validator |