Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version |
Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
2 | 0xr 11032 | . . 3 ⊢ 0 ∈ ℝ* | |
3 | pnfxr 11039 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | elicc1 13133 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
5 | 2, 3, 4 | mp2an 689 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
6 | pnfge 12876 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
8 | 7 | pm4.71i 560 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
9 | 1, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5073 (class class class)co 7267 0cc0 10881 +∞cpnf 11016 ℝ*cxr 11018 ≤ cle 11020 [,]cicc 13092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-addrcl 10942 ax-rnegex 10952 ax-cnre 10954 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-iota 6384 df-fun 6428 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-icc 13096 |
This theorem is referenced by: 0e0iccpnf 13201 ge0xaddcl 13204 ge0xmulcl 13205 xnn0xrge0 13248 xrge0subm 20649 psmetxrge0 23476 isxmet2d 23490 prdsdsf 23530 prdsxmetlem 23531 comet 23679 stdbdxmet 23681 xrge0gsumle 24006 xrge0tsms 24007 metdsf 24021 metds0 24023 metdstri 24024 metdsre 24026 metdseq0 24027 metdscnlem 24028 metnrmlem1a 24031 xrhmeo 24119 lebnumlem1 24134 xrge0f 24906 itg2const2 24916 itg2uba 24918 itg2mono 24928 itg2gt0 24935 itg2cnlem2 24937 itg2cn 24938 iblss 24979 itgle 24984 itgeqa 24988 ibladdlem 24994 iblabs 25003 iblabsr 25004 iblmulc2 25005 itgsplit 25010 bddmulibl 25013 bddiblnc 25016 xrge0addge 31088 xrge0infss 31091 xrge0addcld 31093 xrge0subcld 31094 xrge00 31303 xrge0tsmsd 31325 esummono 32030 gsumesum 32035 esumsnf 32040 esumrnmpt2 32044 esumpmono 32055 hashf2 32060 measge0 32183 measle0 32184 measssd 32191 measunl 32192 omssubaddlem 32274 omssubadd 32275 carsgsigalem 32290 pmeasmono 32299 sibfinima 32314 prob01 32388 dstrvprob 32446 itg2addnclem 35836 ibladdnclem 35841 iblabsnc 35849 iblmulc2nc 35850 ftc1anclem4 35861 ftc1anclem5 35862 ftc1anclem6 35863 ftc1anclem7 35864 ftc1anclem8 35865 ftc1anc 35866 xrge0ge0 42867 rrxsphere 46072 |
Copyright terms: Public domain | W3C validator |