| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxrge0 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| elxrge0 | ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) | |
| 2 | 0xr 11282 | . . 3 ⊢ 0 ∈ ℝ* | |
| 3 | pnfxr 11289 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | elicc1 13406 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞))) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞)) |
| 6 | pnfge 13146 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≤ +∞) |
| 8 | 7 | pm4.71i 559 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ↔ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ 𝐴 ≤ +∞)) |
| 9 | 1, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 0cc0 11129 +∞cpnf 11266 ℝ*cxr 11268 ≤ cle 11270 [,]cicc 13365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-addrcl 11190 ax-rnegex 11200 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-icc 13369 |
| This theorem is referenced by: 0e0iccpnf 13476 ge0xaddcl 13479 ge0xmulcl 13480 xnn0xrge0 13523 xrge0subm 21375 psmetxrge0 24252 isxmet2d 24266 prdsdsf 24306 prdsxmetlem 24307 comet 24452 stdbdxmet 24454 xrge0gsumle 24773 xrge0tsms 24774 metdsf 24788 metds0 24790 metdstri 24791 metdsre 24793 metdseq0 24794 metdscnlem 24795 metnrmlem1a 24798 xrhmeo 24895 lebnumlem1 24911 xrge0f 25684 itg2const2 25694 itg2uba 25696 itg2mono 25706 itg2gt0 25713 itg2cnlem2 25715 itg2cn 25716 iblss 25758 itgle 25763 itgeqa 25767 ibladdlem 25773 iblabs 25782 iblabsr 25783 iblmulc2 25784 itgsplit 25789 bddmulibl 25792 bddiblnc 25795 xrge0addge 32735 xrge0infss 32737 xrge0addcld 32739 xrge0subcld 32740 xrge00 33007 xrge0tsmsd 33056 fldextrspundglemul 33720 esummono 34085 gsumesum 34090 esumsnf 34095 esumrnmpt2 34099 esumpmono 34110 hashf2 34115 measge0 34238 measle0 34239 measssd 34246 measunl 34247 omssubaddlem 34331 omssubadd 34332 carsgsigalem 34347 pmeasmono 34356 sibfinima 34371 prob01 34445 dstrvprob 34504 itg2addnclem 37695 ibladdnclem 37700 iblabsnc 37708 iblmulc2nc 37709 ftc1anclem4 37720 ftc1anclem5 37721 ftc1anclem6 37722 ftc1anclem7 37723 ftc1anclem8 37724 ftc1anc 37725 xrge0ge0 45374 rrxsphere 48728 |
| Copyright terms: Public domain | W3C validator |