| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrssre | Structured version Visualization version GIF version | ||
| Description: A subset of extended reals that does not contain +∞ and -∞ is a subset of the reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| xrssre.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
| xrssre.2 | ⊢ (𝜑 → ¬ +∞ ∈ 𝐴) |
| xrssre.3 | ⊢ (𝜑 → ¬ -∞ ∈ 𝐴) |
| Ref | Expression |
|---|---|
| xrssre | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrssre.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | |
| 2 | ssxr 11249 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)) |
| 4 | 3orass 1089 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (𝐴 ⊆ ℝ ∨ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐴 ⊆ ℝ ∨ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))) |
| 6 | 5 | orcomd 871 | . 2 ⊢ (𝜑 → ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ)) |
| 7 | xrssre.2 | . . . 4 ⊢ (𝜑 → ¬ +∞ ∈ 𝐴) | |
| 8 | xrssre.3 | . . . 4 ⊢ (𝜑 → ¬ -∞ ∈ 𝐴) | |
| 9 | 7, 8 | jca 511 | . . 3 ⊢ (𝜑 → (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴)) |
| 10 | ioran 985 | . . 3 ⊢ (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴)) | |
| 11 | 9, 10 | sylibr 234 | . 2 ⊢ (𝜑 → ¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)) |
| 12 | df-or 848 | . . 3 ⊢ (((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ) ↔ (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ)) | |
| 13 | 12 | biimpi 216 | . 2 ⊢ (((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ) → (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ)) |
| 14 | 6, 11, 13 | sylc 65 | 1 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∈ wcel 2109 ⊆ wss 3916 ℝcr 11073 +∞cpnf 11211 -∞cmnf 11212 ℝ*cxr 11213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 |
| This theorem is referenced by: supminfxr2 45458 |
| Copyright terms: Public domain | W3C validator |