Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrssre Structured version   Visualization version   GIF version

Theorem xrssre 41600
Description: A subset of extended reals that does not contain +∞ and -∞ is a subset of the reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
xrssre.1 (𝜑𝐴 ⊆ ℝ*)
xrssre.2 (𝜑 → ¬ +∞ ∈ 𝐴)
xrssre.3 (𝜑 → ¬ -∞ ∈ 𝐴)
Assertion
Ref Expression
xrssre (𝜑𝐴 ⊆ ℝ)

Proof of Theorem xrssre
StepHypRef Expression
1 xrssre.1 . . . . 5 (𝜑𝐴 ⊆ ℝ*)
2 ssxr 10702 . . . . 5 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
31, 2syl 17 . . . 4 (𝜑 → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
4 3orass 1084 . . . 4 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (𝐴 ⊆ ℝ ∨ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)))
53, 4sylib 220 . . 3 (𝜑 → (𝐴 ⊆ ℝ ∨ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)))
65orcomd 867 . 2 (𝜑 → ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ))
7 xrssre.2 . . . 4 (𝜑 → ¬ +∞ ∈ 𝐴)
8 xrssre.3 . . . 4 (𝜑 → ¬ -∞ ∈ 𝐴)
97, 8jca 514 . . 3 (𝜑 → (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴))
10 ioran 979 . . 3 (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴))
119, 10sylibr 236 . 2 (𝜑 → ¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
12 df-or 844 . . 3 (((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ) ↔ (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ))
1312biimpi 218 . 2 (((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ) → (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ))
146, 11, 13sylc 65 1 (𝜑𝐴 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3o 1080  wcel 2107  wss 3934  cr 10528  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671
This theorem is referenced by:  supminfxr2  41729
  Copyright terms: Public domain W3C validator