Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrssre Structured version   Visualization version   GIF version

Theorem xrssre 45248
Description: A subset of extended reals that does not contain +∞ and -∞ is a subset of the reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
xrssre.1 (𝜑𝐴 ⊆ ℝ*)
xrssre.2 (𝜑 → ¬ +∞ ∈ 𝐴)
xrssre.3 (𝜑 → ¬ -∞ ∈ 𝐴)
Assertion
Ref Expression
xrssre (𝜑𝐴 ⊆ ℝ)

Proof of Theorem xrssre
StepHypRef Expression
1 xrssre.1 . . . . 5 (𝜑𝐴 ⊆ ℝ*)
2 ssxr 11321 . . . . 5 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
31, 2syl 17 . . . 4 (𝜑 → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
4 3orass 1088 . . . 4 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (𝐴 ⊆ ℝ ∨ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)))
53, 4sylib 218 . . 3 (𝜑 → (𝐴 ⊆ ℝ ∨ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)))
65orcomd 870 . 2 (𝜑 → ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ))
7 xrssre.2 . . . 4 (𝜑 → ¬ +∞ ∈ 𝐴)
8 xrssre.3 . . . 4 (𝜑 → ¬ -∞ ∈ 𝐴)
97, 8jca 511 . . 3 (𝜑 → (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴))
10 ioran 984 . . 3 (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴))
119, 10sylibr 234 . 2 (𝜑 → ¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
12 df-or 847 . . 3 (((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ) ↔ (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ))
1312biimpi 216 . 2 (((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ) → (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ))
146, 11, 13sylc 65 1 (𝜑𝐴 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3o 1084  wcel 2104  wss 3963  cr 11145  +∞cpnf 11283  -∞cmnf 11284  *cxr 11285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747  ax-resscn 11203
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-er 8738  df-en 8979  df-dom 8980  df-sdom 8981  df-pnf 11288  df-mnf 11289  df-xr 11290
This theorem is referenced by:  supminfxr2  45369
  Copyright terms: Public domain W3C validator