![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrssre | Structured version Visualization version GIF version |
Description: A subset of extended reals that does not contain +∞ and -∞ is a subset of the reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
xrssre.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
xrssre.2 | ⊢ (𝜑 → ¬ +∞ ∈ 𝐴) |
xrssre.3 | ⊢ (𝜑 → ¬ -∞ ∈ 𝐴) |
Ref | Expression |
---|---|
xrssre | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrssre.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | |
2 | ssxr 11284 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)) |
4 | 3orass 1087 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (𝐴 ⊆ ℝ ∨ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))) | |
5 | 3, 4 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐴 ⊆ ℝ ∨ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))) |
6 | 5 | orcomd 868 | . 2 ⊢ (𝜑 → ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ)) |
7 | xrssre.2 | . . . 4 ⊢ (𝜑 → ¬ +∞ ∈ 𝐴) | |
8 | xrssre.3 | . . . 4 ⊢ (𝜑 → ¬ -∞ ∈ 𝐴) | |
9 | 7, 8 | jca 511 | . . 3 ⊢ (𝜑 → (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴)) |
10 | ioran 980 | . . 3 ⊢ (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴)) | |
11 | 9, 10 | sylibr 233 | . 2 ⊢ (𝜑 → ¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)) |
12 | df-or 845 | . . 3 ⊢ (((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ) ↔ (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ)) | |
13 | 12 | biimpi 215 | . 2 ⊢ (((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ) → (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ)) |
14 | 6, 11, 13 | sylc 65 | 1 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 844 ∨ w3o 1083 ∈ wcel 2098 ⊆ wss 3943 ℝcr 11108 +∞cpnf 11246 -∞cmnf 11247 ℝ*cxr 11248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 |
This theorem is referenced by: supminfxr2 44732 |
Copyright terms: Public domain | W3C validator |