Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fge0iccico Structured version   Visualization version   GIF version

Theorem fge0iccico 46366
Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fge0iccico.f (𝜑𝐹:𝑋⟶(0[,]+∞))
fge0iccico.re (𝜑 → ¬ +∞ ∈ ran 𝐹)
Assertion
Ref Expression
fge0iccico (𝜑𝐹:𝑋⟶(0[,)+∞))

Proof of Theorem fge0iccico
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fge0iccico.f . . . 4 (𝜑𝐹:𝑋⟶(0[,]+∞))
21ffnd 6712 . . 3 (𝜑𝐹 Fn 𝑋)
3 0xr 11287 . . . . . 6 0 ∈ ℝ*
43a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 0 ∈ ℝ*)
5 pnfxr 11294 . . . . . 6 +∞ ∈ ℝ*
65a1i 11 . . . . 5 ((𝜑𝑥𝑋) → +∞ ∈ ℝ*)
7 iccssxr 13452 . . . . . 6 (0[,]+∞) ⊆ ℝ*
81ffvelcdmda 7079 . . . . . 6 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (0[,]+∞))
97, 8sselid 3961 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ*)
10 iccgelb 13424 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑥) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑥))
114, 6, 8, 10syl3anc 1373 . . . . 5 ((𝜑𝑥𝑋) → 0 ≤ (𝐹𝑥))
129adantr 480 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → (𝐹𝑥) ∈ ℝ*)
13 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → ¬ (𝐹𝑥) < +∞)
145a1i 11 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → +∞ ∈ ℝ*)
1514, 12xrlenltd 11306 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → (+∞ ≤ (𝐹𝑥) ↔ ¬ (𝐹𝑥) < +∞))
1613, 15mpbird 257 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → +∞ ≤ (𝐹𝑥))
1712, 16xrgepnfd 45325 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → (𝐹𝑥) = +∞)
1817eqcomd 2742 . . . . . . 7 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → +∞ = (𝐹𝑥))
191ffund 6715 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
2019adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑋) → Fun 𝐹)
21 simpr 484 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑥𝑋)
22 fdm 6720 . . . . . . . . . . . . 13 (𝐹:𝑋⟶(0[,]+∞) → dom 𝐹 = 𝑋)
2322eqcomd 2742 . . . . . . . . . . . 12 (𝐹:𝑋⟶(0[,]+∞) → 𝑋 = dom 𝐹)
241, 23syl 17 . . . . . . . . . . 11 (𝜑𝑋 = dom 𝐹)
2524adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑋 = dom 𝐹)
2621, 25eleqtrd 2837 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ dom 𝐹)
27 fvelrn 7071 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
2820, 26, 27syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ran 𝐹)
2928adantr 480 . . . . . . 7 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → (𝐹𝑥) ∈ ran 𝐹)
3018, 29eqeltrd 2835 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → +∞ ∈ ran 𝐹)
31 fge0iccico.re . . . . . . 7 (𝜑 → ¬ +∞ ∈ ran 𝐹)
3231ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → ¬ +∞ ∈ ran 𝐹)
3330, 32condan 817 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) < +∞)
344, 6, 9, 11, 33elicod 13417 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (0[,)+∞))
3534ralrimiva 3133 . . 3 (𝜑 → ∀𝑥𝑋 (𝐹𝑥) ∈ (0[,)+∞))
362, 35jca 511 . 2 (𝜑 → (𝐹 Fn 𝑋 ∧ ∀𝑥𝑋 (𝐹𝑥) ∈ (0[,)+∞)))
37 ffnfv 7114 . 2 (𝐹:𝑋⟶(0[,)+∞) ↔ (𝐹 Fn 𝑋 ∧ ∀𝑥𝑋 (𝐹𝑥) ∈ (0[,)+∞)))
3836, 37sylibr 234 1 (𝜑𝐹:𝑋⟶(0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  dom cdm 5659  ran crn 5660  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  0cc0 11134  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275  [,)cico 13369  [,]cicc 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-addrcl 11195  ax-rnegex 11205  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-ico 13373  df-icc 13374
This theorem is referenced by:  fge0iccre  46370  sge00  46372  sge0sn  46375  sge0tsms  46376  sge0cl  46377  sge0supre  46385  sge0sup  46387  sge0less  46388  sge0rnbnd  46389  sge0ltfirp  46396  sge0resplit  46402  sge0le  46403  sge0split  46405  sge0iunmptlemre  46411
  Copyright terms: Public domain W3C validator