Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fge0iccico Structured version   Visualization version   GIF version

Theorem fge0iccico 46478
Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fge0iccico.f (𝜑𝐹:𝑋⟶(0[,]+∞))
fge0iccico.re (𝜑 → ¬ +∞ ∈ ran 𝐹)
Assertion
Ref Expression
fge0iccico (𝜑𝐹:𝑋⟶(0[,)+∞))

Proof of Theorem fge0iccico
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fge0iccico.f . . . 4 (𝜑𝐹:𝑋⟶(0[,]+∞))
21ffnd 6652 . . 3 (𝜑𝐹 Fn 𝑋)
3 0xr 11159 . . . . . 6 0 ∈ ℝ*
43a1i 11 . . . . 5 ((𝜑𝑥𝑋) → 0 ∈ ℝ*)
5 pnfxr 11166 . . . . . 6 +∞ ∈ ℝ*
65a1i 11 . . . . 5 ((𝜑𝑥𝑋) → +∞ ∈ ℝ*)
7 iccssxr 13330 . . . . . 6 (0[,]+∞) ⊆ ℝ*
81ffvelcdmda 7017 . . . . . 6 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (0[,]+∞))
97, 8sselid 3927 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ*)
10 iccgelb 13302 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑥) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑥))
114, 6, 8, 10syl3anc 1373 . . . . 5 ((𝜑𝑥𝑋) → 0 ≤ (𝐹𝑥))
129adantr 480 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → (𝐹𝑥) ∈ ℝ*)
13 simpr 484 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → ¬ (𝐹𝑥) < +∞)
145a1i 11 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → +∞ ∈ ℝ*)
1514, 12xrlenltd 11178 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → (+∞ ≤ (𝐹𝑥) ↔ ¬ (𝐹𝑥) < +∞))
1613, 15mpbird 257 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → +∞ ≤ (𝐹𝑥))
1712, 16xrgepnfd 45440 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → (𝐹𝑥) = +∞)
1817eqcomd 2737 . . . . . . 7 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → +∞ = (𝐹𝑥))
191ffund 6655 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
2019adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑋) → Fun 𝐹)
21 simpr 484 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑥𝑋)
22 fdm 6660 . . . . . . . . . . . . 13 (𝐹:𝑋⟶(0[,]+∞) → dom 𝐹 = 𝑋)
2322eqcomd 2737 . . . . . . . . . . . 12 (𝐹:𝑋⟶(0[,]+∞) → 𝑋 = dom 𝐹)
241, 23syl 17 . . . . . . . . . . 11 (𝜑𝑋 = dom 𝐹)
2524adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝑋 = dom 𝐹)
2621, 25eleqtrd 2833 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ dom 𝐹)
27 fvelrn 7009 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
2820, 26, 27syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ran 𝐹)
2928adantr 480 . . . . . . 7 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → (𝐹𝑥) ∈ ran 𝐹)
3018, 29eqeltrd 2831 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → +∞ ∈ ran 𝐹)
31 fge0iccico.re . . . . . . 7 (𝜑 → ¬ +∞ ∈ ran 𝐹)
3231ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ (𝐹𝑥) < +∞) → ¬ +∞ ∈ ran 𝐹)
3330, 32condan 817 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) < +∞)
344, 6, 9, 11, 33elicod 13295 . . . 4 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (0[,)+∞))
3534ralrimiva 3124 . . 3 (𝜑 → ∀𝑥𝑋 (𝐹𝑥) ∈ (0[,)+∞))
362, 35jca 511 . 2 (𝜑 → (𝐹 Fn 𝑋 ∧ ∀𝑥𝑋 (𝐹𝑥) ∈ (0[,)+∞)))
37 ffnfv 7052 . 2 (𝐹:𝑋⟶(0[,)+∞) ↔ (𝐹 Fn 𝑋 ∧ ∀𝑥𝑋 (𝐹𝑥) ∈ (0[,)+∞)))
3836, 37sylibr 234 1 (𝜑𝐹:𝑋⟶(0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  dom cdm 5614  ran crn 5615  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  [,)cico 13247  [,]cicc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-addrcl 11067  ax-rnegex 11077  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ico 13251  df-icc 13252
This theorem is referenced by:  fge0iccre  46482  sge00  46484  sge0sn  46487  sge0tsms  46488  sge0cl  46489  sge0supre  46497  sge0sup  46499  sge0less  46500  sge0rnbnd  46501  sge0ltfirp  46508  sge0resplit  46514  sge0le  46515  sge0split  46517  sge0iunmptlemre  46523
  Copyright terms: Public domain W3C validator