| Step | Hyp | Ref
| Expression |
| 1 | | fge0iccico.f |
. . . 4
⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| 2 | 1 | ffnd 6712 |
. . 3
⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 3 | | 0xr 11287 |
. . . . . 6
⊢ 0 ∈
ℝ* |
| 4 | 3 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈
ℝ*) |
| 5 | | pnfxr 11294 |
. . . . . 6
⊢ +∞
∈ ℝ* |
| 6 | 5 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → +∞ ∈
ℝ*) |
| 7 | | iccssxr 13452 |
. . . . . 6
⊢
(0[,]+∞) ⊆ ℝ* |
| 8 | 1 | ffvelcdmda 7079 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ (0[,]+∞)) |
| 9 | 7, 8 | sselid 3961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈
ℝ*) |
| 10 | | iccgelb 13424 |
. . . . . 6
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
(𝐹‘𝑥) ∈ (0[,]+∞)) → 0 ≤ (𝐹‘𝑥)) |
| 11 | 4, 6, 8, 10 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ≤ (𝐹‘𝑥)) |
| 12 | 9 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ (𝐹‘𝑥) < +∞) → (𝐹‘𝑥) ∈
ℝ*) |
| 13 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ (𝐹‘𝑥) < +∞) → ¬ (𝐹‘𝑥) < +∞) |
| 14 | 5 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ (𝐹‘𝑥) < +∞) → +∞ ∈
ℝ*) |
| 15 | 14, 12 | xrlenltd 11306 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ (𝐹‘𝑥) < +∞) → (+∞ ≤ (𝐹‘𝑥) ↔ ¬ (𝐹‘𝑥) < +∞)) |
| 16 | 13, 15 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ (𝐹‘𝑥) < +∞) → +∞ ≤ (𝐹‘𝑥)) |
| 17 | 12, 16 | xrgepnfd 45325 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ (𝐹‘𝑥) < +∞) → (𝐹‘𝑥) = +∞) |
| 18 | 17 | eqcomd 2742 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ (𝐹‘𝑥) < +∞) → +∞ = (𝐹‘𝑥)) |
| 19 | 1 | ffund 6715 |
. . . . . . . . . 10
⊢ (𝜑 → Fun 𝐹) |
| 20 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Fun 𝐹) |
| 21 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 22 | | fdm 6720 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑋⟶(0[,]+∞) → dom 𝐹 = 𝑋) |
| 23 | 22 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋⟶(0[,]+∞) → 𝑋 = dom 𝐹) |
| 24 | 1, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 = dom 𝐹) |
| 25 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 = dom 𝐹) |
| 26 | 21, 25 | eleqtrd 2837 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom 𝐹) |
| 27 | | fvelrn 7071 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 28 | 20, 26, 27 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 29 | 28 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ (𝐹‘𝑥) < +∞) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 30 | 18, 29 | eqeltrd 2835 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ (𝐹‘𝑥) < +∞) → +∞ ∈ ran
𝐹) |
| 31 | | fge0iccico.re |
. . . . . . 7
⊢ (𝜑 → ¬ +∞ ∈ ran
𝐹) |
| 32 | 31 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ (𝐹‘𝑥) < +∞) → ¬ +∞ ∈
ran 𝐹) |
| 33 | 30, 32 | condan 817 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) < +∞) |
| 34 | 4, 6, 9, 11, 33 | elicod 13417 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ (0[,)+∞)) |
| 35 | 34 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝐹‘𝑥) ∈ (0[,)+∞)) |
| 36 | 2, 35 | jca 511 |
. 2
⊢ (𝜑 → (𝐹 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝐹‘𝑥) ∈ (0[,)+∞))) |
| 37 | | ffnfv 7114 |
. 2
⊢ (𝐹:𝑋⟶(0[,)+∞) ↔ (𝐹 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝐹‘𝑥) ∈ (0[,)+∞))) |
| 38 | 36, 37 | sylibr 234 |
1
⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |