MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem1 Structured version   Visualization version   GIF version

Theorem psercnlem1 25018
Description: Lemma for psercn 25019. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
psercnlem1 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercnlem1
StepHypRef Expression
1 psercn.m . . . 4 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
2 psercn.s . . . . . . . . . . 11 𝑆 = (abs “ (0[,)𝑅))
3 cnvimass 5927 . . . . . . . . . . . 12 (abs “ (0[,)𝑅)) ⊆ dom abs
4 absf 14688 . . . . . . . . . . . . 13 abs:ℂ⟶ℝ
54fdmi 6505 . . . . . . . . . . . 12 dom abs = ℂ
63, 5sseqtri 3978 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ ℂ
72, 6eqsstri 3976 . . . . . . . . . 10 𝑆 ⊆ ℂ
87a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
98sselda 3942 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
109abscld 14787 . . . . . . 7 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
11 readdcl 10609 . . . . . . 7 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 𝑅) ∈ ℝ)
1210, 11sylan 583 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 𝑅) ∈ ℝ)
1312rehalfcld 11872 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (((abs‘𝑎) + 𝑅) / 2) ∈ ℝ)
14 peano2re 10802 . . . . . . 7 ((abs‘𝑎) ∈ ℝ → ((abs‘𝑎) + 1) ∈ ℝ)
1510, 14syl 17 . . . . . 6 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 1) ∈ ℝ)
1615adantr 484 . . . . 5 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 1) ∈ ℝ)
1713, 16ifclda 4473 . . . 4 ((𝜑𝑎𝑆) → if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ∈ ℝ)
181, 17eqeltrid 2918 . . 3 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
19 0re 10632 . . . . 5 0 ∈ ℝ
2019a1i 11 . . . 4 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
219absge0d 14795 . . . 4 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
22 breq2 5046 . . . . . 6 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
23 breq2 5046 . . . . . 6 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < ((abs‘𝑎) + 1) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
24 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 𝑎𝑆)
2524, 2eleqtrdi 2924 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑅)))
26 ffn 6494 . . . . . . . . . . . . 13 (abs:ℂ⟶ℝ → abs Fn ℂ)
27 elpreima 6810 . . . . . . . . . . . . 13 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅))))
284, 26, 27mp2b 10 . . . . . . . . . . . 12 (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
2925, 28sylib 221 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3029simprd 499 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑅))
31 iccssxr 12808 . . . . . . . . . . . 12 (0[,]+∞) ⊆ ℝ*
32 pserf.g . . . . . . . . . . . . . 14 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
33 pserf.a . . . . . . . . . . . . . 14 (𝜑𝐴:ℕ0⟶ℂ)
34 pserf.r . . . . . . . . . . . . . 14 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3532, 33, 34radcnvcl 25010 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ (0[,]+∞))
3635adantr 484 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3731, 36sseldi 3940 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
38 elico2 12789 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
3919, 37, 38sylancr 590 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4030, 39mpbid 235 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅))
4140simp3d 1141 . . . . . . . 8 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑅)
4241adantr 484 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < 𝑅)
43 avglt1 11863 . . . . . . . 8 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4410, 43sylan 583 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4542, 44mpbid 235 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2))
4610ltp1d 11559 . . . . . . 7 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 1))
4746adantr 484 . . . . . 6 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → (abs‘𝑎) < ((abs‘𝑎) + 1))
4822, 23, 45, 47ifbothda 4476 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)))
4948, 1breqtrrdi 5084 . . . 4 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
5020, 10, 18, 21, 49lelttrd 10787 . . 3 ((𝜑𝑎𝑆) → 0 < 𝑀)
5118, 50elrpd 12416 . 2 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
52 breq1 5045 . . . 4 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((((abs‘𝑎) + 𝑅) / 2) < 𝑅 ↔ if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅))
53 breq1 5045 . . . 4 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → (((abs‘𝑎) + 1) < 𝑅 ↔ if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅))
54 avglt2 11864 . . . . . 6 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (((abs‘𝑎) + 𝑅) / 2) < 𝑅))
5510, 54sylan 583 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (((abs‘𝑎) + 𝑅) / 2) < 𝑅))
5642, 55mpbid 235 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (((abs‘𝑎) + 𝑅) / 2) < 𝑅)
5715rexrd 10680 . . . . . . . 8 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 1) ∈ ℝ*)
5837, 57xrlenltd 10696 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑅 ≤ ((abs‘𝑎) + 1) ↔ ¬ ((abs‘𝑎) + 1) < 𝑅))
59 0xr 10677 . . . . . . . . . . . . 13 0 ∈ ℝ*
60 pnfxr 10684 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
61 elicc1 12770 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
6259, 60, 61mp2an 691 . . . . . . . . . . . 12 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
6335, 62sylib 221 . . . . . . . . . . 11 (𝜑 → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
6463simp2d 1140 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑅)
6564adantr 484 . . . . . . . . 9 ((𝜑𝑎𝑆) → 0 ≤ 𝑅)
66 ge0gtmnf 12553 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → -∞ < 𝑅)
6737, 65, 66syl2anc 587 . . . . . . . 8 ((𝜑𝑎𝑆) → -∞ < 𝑅)
68 xrre 12550 . . . . . . . . 9 (((𝑅 ∈ ℝ* ∧ ((abs‘𝑎) + 1) ∈ ℝ) ∧ (-∞ < 𝑅𝑅 ≤ ((abs‘𝑎) + 1))) → 𝑅 ∈ ℝ)
6968expr 460 . . . . . . . 8 (((𝑅 ∈ ℝ* ∧ ((abs‘𝑎) + 1) ∈ ℝ) ∧ -∞ < 𝑅) → (𝑅 ≤ ((abs‘𝑎) + 1) → 𝑅 ∈ ℝ))
7037, 15, 67, 69syl21anc 836 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑅 ≤ ((abs‘𝑎) + 1) → 𝑅 ∈ ℝ))
7158, 70sylbird 263 . . . . . 6 ((𝜑𝑎𝑆) → (¬ ((abs‘𝑎) + 1) < 𝑅𝑅 ∈ ℝ))
7271con1d 147 . . . . 5 ((𝜑𝑎𝑆) → (¬ 𝑅 ∈ ℝ → ((abs‘𝑎) + 1) < 𝑅))
7372imp 410 . . . 4 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 1) < 𝑅)
7452, 53, 56, 73ifbothda 4476 . . 3 ((𝜑𝑎𝑆) → if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅)
751, 74eqbrtrid 5077 . 2 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
7651, 49, 753jca 1125 1 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  {crab 3134  wss 3908  ifcif 4439   class class class wbr 5042  cmpt 5122  ccnv 5531  dom cdm 5532  cima 5535   Fn wfn 6329  wf 6330  cfv 6334  (class class class)co 7140  supcsup 8892  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  2c2 11680  0cn0 11885  +crp 12377  [,)cico 12728  [,]cicc 12729  seqcseq 13364  cexp 13425  abscabs 14584  cli 14832  Σcsu 15033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836
This theorem is referenced by:  psercn  25019  pserdvlem1  25020  pserdvlem2  25021  pserdv  25022
  Copyright terms: Public domain W3C validator