MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem1 Structured version   Visualization version   GIF version

Theorem psercnlem1 24399
Description: Lemma for psercn 24400. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
psercnlem1 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercnlem1
StepHypRef Expression
1 psercn.m . . . 4 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
2 psercn.s . . . . . . . . . . 11 𝑆 = (abs “ (0[,)𝑅))
3 cnvimass 5626 . . . . . . . . . . . 12 (abs “ (0[,)𝑅)) ⊆ dom abs
4 absf 14285 . . . . . . . . . . . . 13 abs:ℂ⟶ℝ
54fdmi 6192 . . . . . . . . . . . 12 dom abs = ℂ
63, 5sseqtri 3786 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ ℂ
72, 6eqsstri 3784 . . . . . . . . . 10 𝑆 ⊆ ℂ
87a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
98sselda 3752 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
109abscld 14383 . . . . . . 7 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
11 readdcl 10221 . . . . . . 7 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 𝑅) ∈ ℝ)
1210, 11sylan 561 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 𝑅) ∈ ℝ)
1312rehalfcld 11481 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (((abs‘𝑎) + 𝑅) / 2) ∈ ℝ)
14 peano2re 10411 . . . . . . 7 ((abs‘𝑎) ∈ ℝ → ((abs‘𝑎) + 1) ∈ ℝ)
1510, 14syl 17 . . . . . 6 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 1) ∈ ℝ)
1615adantr 466 . . . . 5 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 1) ∈ ℝ)
1713, 16ifclda 4259 . . . 4 ((𝜑𝑎𝑆) → if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ∈ ℝ)
181, 17syl5eqel 2854 . . 3 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
19 0re 10242 . . . . 5 0 ∈ ℝ
2019a1i 11 . . . 4 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
219absge0d 14391 . . . 4 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
22 breq2 4790 . . . . . 6 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
23 breq2 4790 . . . . . 6 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < ((abs‘𝑎) + 1) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
24 simpr 471 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 𝑎𝑆)
2524, 2syl6eleq 2860 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑅)))
26 ffn 6185 . . . . . . . . . . . . 13 (abs:ℂ⟶ℝ → abs Fn ℂ)
27 elpreima 6480 . . . . . . . . . . . . 13 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅))))
284, 26, 27mp2b 10 . . . . . . . . . . . 12 (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
2925, 28sylib 208 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3029simprd 477 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑅))
31 iccssxr 12461 . . . . . . . . . . . 12 (0[,]+∞) ⊆ ℝ*
32 pserf.g . . . . . . . . . . . . . 14 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
33 pserf.a . . . . . . . . . . . . . 14 (𝜑𝐴:ℕ0⟶ℂ)
34 pserf.r . . . . . . . . . . . . . 14 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3532, 33, 34radcnvcl 24391 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ (0[,]+∞))
3635adantr 466 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3731, 36sseldi 3750 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
38 elico2 12442 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
3919, 37, 38sylancr 567 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4030, 39mpbid 222 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅))
4140simp3d 1138 . . . . . . . 8 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑅)
4241adantr 466 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < 𝑅)
43 avglt1 11472 . . . . . . . 8 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4410, 43sylan 561 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4542, 44mpbid 222 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2))
4610ltp1d 11156 . . . . . . 7 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 1))
4746adantr 466 . . . . . 6 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → (abs‘𝑎) < ((abs‘𝑎) + 1))
4822, 23, 45, 47ifbothda 4262 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)))
4948, 1syl6breqr 4828 . . . 4 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
5020, 10, 18, 21, 49lelttrd 10397 . . 3 ((𝜑𝑎𝑆) → 0 < 𝑀)
5118, 50elrpd 12072 . 2 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
52 breq1 4789 . . . 4 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((((abs‘𝑎) + 𝑅) / 2) < 𝑅 ↔ if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅))
53 breq1 4789 . . . 4 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → (((abs‘𝑎) + 1) < 𝑅 ↔ if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅))
54 avglt2 11473 . . . . . 6 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (((abs‘𝑎) + 𝑅) / 2) < 𝑅))
5510, 54sylan 561 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (((abs‘𝑎) + 𝑅) / 2) < 𝑅))
5642, 55mpbid 222 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (((abs‘𝑎) + 𝑅) / 2) < 𝑅)
5715rexrd 10291 . . . . . . . 8 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 1) ∈ ℝ*)
58 xrlenlt 10305 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ ((abs‘𝑎) + 1) ∈ ℝ*) → (𝑅 ≤ ((abs‘𝑎) + 1) ↔ ¬ ((abs‘𝑎) + 1) < 𝑅))
5937, 57, 58syl2anc 565 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑅 ≤ ((abs‘𝑎) + 1) ↔ ¬ ((abs‘𝑎) + 1) < 𝑅))
60 0xr 10288 . . . . . . . . . . . . 13 0 ∈ ℝ*
61 pnfxr 10294 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
62 elicc1 12424 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
6360, 61, 62mp2an 664 . . . . . . . . . . . 12 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
6435, 63sylib 208 . . . . . . . . . . 11 (𝜑 → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
6564simp2d 1137 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑅)
6665adantr 466 . . . . . . . . 9 ((𝜑𝑎𝑆) → 0 ≤ 𝑅)
67 ge0gtmnf 12208 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → -∞ < 𝑅)
6837, 66, 67syl2anc 565 . . . . . . . 8 ((𝜑𝑎𝑆) → -∞ < 𝑅)
69 xrre 12205 . . . . . . . . 9 (((𝑅 ∈ ℝ* ∧ ((abs‘𝑎) + 1) ∈ ℝ) ∧ (-∞ < 𝑅𝑅 ≤ ((abs‘𝑎) + 1))) → 𝑅 ∈ ℝ)
7069expr 444 . . . . . . . 8 (((𝑅 ∈ ℝ* ∧ ((abs‘𝑎) + 1) ∈ ℝ) ∧ -∞ < 𝑅) → (𝑅 ≤ ((abs‘𝑎) + 1) → 𝑅 ∈ ℝ))
7137, 15, 68, 70syl21anc 1475 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑅 ≤ ((abs‘𝑎) + 1) → 𝑅 ∈ ℝ))
7259, 71sylbird 250 . . . . . 6 ((𝜑𝑎𝑆) → (¬ ((abs‘𝑎) + 1) < 𝑅𝑅 ∈ ℝ))
7372con1d 141 . . . . 5 ((𝜑𝑎𝑆) → (¬ 𝑅 ∈ ℝ → ((abs‘𝑎) + 1) < 𝑅))
7473imp 393 . . . 4 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 1) < 𝑅)
7552, 53, 56, 74ifbothda 4262 . . 3 ((𝜑𝑎𝑆) → if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅)
761, 75syl5eqbr 4821 . 2 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
7751, 49, 763jca 1122 1 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  {crab 3065  wss 3723  ifcif 4225   class class class wbr 4786  cmpt 4863  ccnv 5248  dom cdm 5249  cima 5252   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  supcsup 8502  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  +∞cpnf 10273  -∞cmnf 10274  *cxr 10275   < clt 10276  cle 10277   / cdiv 10886  2c2 11272  0cn0 11494  +crp 12035  [,)cico 12382  [,]cicc 12383  seqcseq 13008  cexp 13067  abscabs 14182  cli 14423  Σcsu 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-ico 12386  df-icc 12387  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427
This theorem is referenced by:  psercn  24400  pserdvlem1  24401  pserdvlem2  24402  pserdv  24403
  Copyright terms: Public domain W3C validator