MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem1 Structured version   Visualization version   GIF version

Theorem psercnlem1 25612
Description: Lemma for psercn 25613. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
psercnlem1 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercnlem1
StepHypRef Expression
1 psercn.m . . . 4 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
2 psercn.s . . . . . . . . . . 11 𝑆 = (abs “ (0[,)𝑅))
3 cnvimass 5990 . . . . . . . . . . . 12 (abs “ (0[,)𝑅)) ⊆ dom abs
4 absf 15077 . . . . . . . . . . . . 13 abs:ℂ⟶ℝ
54fdmi 6630 . . . . . . . . . . . 12 dom abs = ℂ
63, 5sseqtri 3959 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ ℂ
72, 6eqsstri 3957 . . . . . . . . . 10 𝑆 ⊆ ℂ
87a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
98sselda 3923 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
109abscld 15176 . . . . . . 7 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
11 readdcl 10982 . . . . . . 7 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 𝑅) ∈ ℝ)
1210, 11sylan 579 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 𝑅) ∈ ℝ)
1312rehalfcld 12248 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (((abs‘𝑎) + 𝑅) / 2) ∈ ℝ)
14 peano2re 11176 . . . . . . 7 ((abs‘𝑎) ∈ ℝ → ((abs‘𝑎) + 1) ∈ ℝ)
1510, 14syl 17 . . . . . 6 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 1) ∈ ℝ)
1615adantr 480 . . . . 5 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 1) ∈ ℝ)
1713, 16ifclda 4497 . . . 4 ((𝜑𝑎𝑆) → if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ∈ ℝ)
181, 17eqeltrid 2838 . . 3 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
19 0re 11005 . . . . 5 0 ∈ ℝ
2019a1i 11 . . . 4 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
219absge0d 15184 . . . 4 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
22 breq2 5081 . . . . . 6 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
23 breq2 5081 . . . . . 6 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < ((abs‘𝑎) + 1) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
24 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 𝑎𝑆)
2524, 2eleqtrdi 2844 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑅)))
26 ffn 6618 . . . . . . . . . . . . 13 (abs:ℂ⟶ℝ → abs Fn ℂ)
27 elpreima 6955 . . . . . . . . . . . . 13 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅))))
284, 26, 27mp2b 10 . . . . . . . . . . . 12 (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
2925, 28sylib 217 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3029simprd 495 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑅))
31 iccssxr 13190 . . . . . . . . . . . 12 (0[,]+∞) ⊆ ℝ*
32 pserf.g . . . . . . . . . . . . . 14 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
33 pserf.a . . . . . . . . . . . . . 14 (𝜑𝐴:ℕ0⟶ℂ)
34 pserf.r . . . . . . . . . . . . . 14 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3532, 33, 34radcnvcl 25604 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ (0[,]+∞))
3635adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3731, 36sselid 3921 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
38 elico2 13171 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
3919, 37, 38sylancr 586 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4030, 39mpbid 231 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅))
4140simp3d 1142 . . . . . . . 8 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑅)
4241adantr 480 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < 𝑅)
43 avglt1 12239 . . . . . . . 8 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4410, 43sylan 579 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4542, 44mpbid 231 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2))
4610ltp1d 11933 . . . . . . 7 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 1))
4746adantr 480 . . . . . 6 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → (abs‘𝑎) < ((abs‘𝑎) + 1))
4822, 23, 45, 47ifbothda 4500 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)))
4948, 1breqtrrdi 5119 . . . 4 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
5020, 10, 18, 21, 49lelttrd 11161 . . 3 ((𝜑𝑎𝑆) → 0 < 𝑀)
5118, 50elrpd 12797 . 2 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
52 breq1 5080 . . . 4 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((((abs‘𝑎) + 𝑅) / 2) < 𝑅 ↔ if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅))
53 breq1 5080 . . . 4 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → (((abs‘𝑎) + 1) < 𝑅 ↔ if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅))
54 avglt2 12240 . . . . . 6 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (((abs‘𝑎) + 𝑅) / 2) < 𝑅))
5510, 54sylan 579 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (((abs‘𝑎) + 𝑅) / 2) < 𝑅))
5642, 55mpbid 231 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (((abs‘𝑎) + 𝑅) / 2) < 𝑅)
5715rexrd 11053 . . . . . . . 8 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 1) ∈ ℝ*)
5837, 57xrlenltd 11069 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑅 ≤ ((abs‘𝑎) + 1) ↔ ¬ ((abs‘𝑎) + 1) < 𝑅))
59 0xr 11050 . . . . . . . . . . . . 13 0 ∈ ℝ*
60 pnfxr 11057 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
61 elicc1 13151 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
6259, 60, 61mp2an 688 . . . . . . . . . . . 12 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
6335, 62sylib 217 . . . . . . . . . . 11 (𝜑 → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
6463simp2d 1141 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑅)
6564adantr 480 . . . . . . . . 9 ((𝜑𝑎𝑆) → 0 ≤ 𝑅)
66 ge0gtmnf 12934 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → -∞ < 𝑅)
6737, 65, 66syl2anc 583 . . . . . . . 8 ((𝜑𝑎𝑆) → -∞ < 𝑅)
68 xrre 12931 . . . . . . . . 9 (((𝑅 ∈ ℝ* ∧ ((abs‘𝑎) + 1) ∈ ℝ) ∧ (-∞ < 𝑅𝑅 ≤ ((abs‘𝑎) + 1))) → 𝑅 ∈ ℝ)
6968expr 456 . . . . . . . 8 (((𝑅 ∈ ℝ* ∧ ((abs‘𝑎) + 1) ∈ ℝ) ∧ -∞ < 𝑅) → (𝑅 ≤ ((abs‘𝑎) + 1) → 𝑅 ∈ ℝ))
7037, 15, 67, 69syl21anc 834 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑅 ≤ ((abs‘𝑎) + 1) → 𝑅 ∈ ℝ))
7158, 70sylbird 259 . . . . . 6 ((𝜑𝑎𝑆) → (¬ ((abs‘𝑎) + 1) < 𝑅𝑅 ∈ ℝ))
7271con1d 145 . . . . 5 ((𝜑𝑎𝑆) → (¬ 𝑅 ∈ ℝ → ((abs‘𝑎) + 1) < 𝑅))
7372imp 406 . . . 4 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 1) < 𝑅)
7452, 53, 56, 73ifbothda 4500 . . 3 ((𝜑𝑎𝑆) → if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅)
751, 74eqbrtrid 5112 . 2 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
7651, 49, 753jca 1126 1 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1537  wcel 2101  {crab 3221  wss 3889  ifcif 4462   class class class wbr 5077  cmpt 5160  ccnv 5590  dom cdm 5591  cima 5594   Fn wfn 6442  wf 6443  cfv 6447  (class class class)co 7295  supcsup 9227  cc 10897  cr 10898  0cc0 10899  1c1 10900   + caddc 10902   · cmul 10904  +∞cpnf 11034  -∞cmnf 11035  *cxr 11036   < clt 11037  cle 11038   / cdiv 11660  2c2 12056  0cn0 12261  +crp 12758  [,)cico 13109  [,]cicc 13110  seqcseq 13749  cexp 13810  abscabs 14973  cli 15221  Σcsu 15425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-inf2 9427  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-sup 9229  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-n0 12262  df-z 12348  df-uz 12611  df-rp 12759  df-ico 13113  df-icc 13114  df-fz 13268  df-seq 13750  df-exp 13811  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-clim 15225
This theorem is referenced by:  psercn  25613  pserdvlem1  25614  pserdvlem2  25615  pserdv  25616
  Copyright terms: Public domain W3C validator