MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem1 Structured version   Visualization version   GIF version

Theorem psercnlem1 26424
Description: Lemma for psercn 26425. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
psercnlem1 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercnlem1
StepHypRef Expression
1 psercn.m . . . 4 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
2 psercn.s . . . . . . . . . . 11 𝑆 = (abs “ (0[,)𝑅))
3 cnvimass 6082 . . . . . . . . . . . 12 (abs “ (0[,)𝑅)) ⊆ dom abs
4 absf 15359 . . . . . . . . . . . . 13 abs:ℂ⟶ℝ
54fdmi 6728 . . . . . . . . . . . 12 dom abs = ℂ
63, 5sseqtri 4014 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ ℂ
72, 6eqsstri 4012 . . . . . . . . . 10 𝑆 ⊆ ℂ
87a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
98sselda 3965 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
109abscld 15458 . . . . . . 7 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
11 readdcl 11221 . . . . . . 7 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 𝑅) ∈ ℝ)
1210, 11sylan 580 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 𝑅) ∈ ℝ)
1312rehalfcld 12497 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (((abs‘𝑎) + 𝑅) / 2) ∈ ℝ)
14 peano2re 11417 . . . . . . 7 ((abs‘𝑎) ∈ ℝ → ((abs‘𝑎) + 1) ∈ ℝ)
1510, 14syl 17 . . . . . 6 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 1) ∈ ℝ)
1615adantr 480 . . . . 5 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 1) ∈ ℝ)
1713, 16ifclda 4543 . . . 4 ((𝜑𝑎𝑆) → if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ∈ ℝ)
181, 17eqeltrid 2837 . . 3 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
19 0re 11246 . . . . 5 0 ∈ ℝ
2019a1i 11 . . . 4 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
219absge0d 15466 . . . 4 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
22 breq2 5129 . . . . . 6 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
23 breq2 5129 . . . . . 6 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < ((abs‘𝑎) + 1) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
24 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 𝑎𝑆)
2524, 2eleqtrdi 2843 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑅)))
26 ffn 6717 . . . . . . . . . . . . 13 (abs:ℂ⟶ℝ → abs Fn ℂ)
27 elpreima 7059 . . . . . . . . . . . . 13 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅))))
284, 26, 27mp2b 10 . . . . . . . . . . . 12 (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
2925, 28sylib 218 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3029simprd 495 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑅))
31 iccssxr 13453 . . . . . . . . . . . 12 (0[,]+∞) ⊆ ℝ*
32 pserf.g . . . . . . . . . . . . . 14 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
33 pserf.a . . . . . . . . . . . . . 14 (𝜑𝐴:ℕ0⟶ℂ)
34 pserf.r . . . . . . . . . . . . . 14 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3532, 33, 34radcnvcl 26415 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ (0[,]+∞))
3635adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3731, 36sselid 3963 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
38 elico2 13434 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
3919, 37, 38sylancr 587 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4030, 39mpbid 232 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅))
4140simp3d 1144 . . . . . . . 8 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑅)
4241adantr 480 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < 𝑅)
43 avglt1 12488 . . . . . . . 8 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4410, 43sylan 580 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4542, 44mpbid 232 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2))
4610ltp1d 12181 . . . . . . 7 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 1))
4746adantr 480 . . . . . 6 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → (abs‘𝑎) < ((abs‘𝑎) + 1))
4822, 23, 45, 47ifbothda 4546 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)))
4948, 1breqtrrdi 5167 . . . 4 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
5020, 10, 18, 21, 49lelttrd 11402 . . 3 ((𝜑𝑎𝑆) → 0 < 𝑀)
5118, 50elrpd 13057 . 2 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
52 breq1 5128 . . . 4 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((((abs‘𝑎) + 𝑅) / 2) < 𝑅 ↔ if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅))
53 breq1 5128 . . . 4 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → (((abs‘𝑎) + 1) < 𝑅 ↔ if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅))
54 avglt2 12489 . . . . . 6 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (((abs‘𝑎) + 𝑅) / 2) < 𝑅))
5510, 54sylan 580 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (((abs‘𝑎) + 𝑅) / 2) < 𝑅))
5642, 55mpbid 232 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (((abs‘𝑎) + 𝑅) / 2) < 𝑅)
5715rexrd 11294 . . . . . . . 8 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 1) ∈ ℝ*)
5837, 57xrlenltd 11310 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑅 ≤ ((abs‘𝑎) + 1) ↔ ¬ ((abs‘𝑎) + 1) < 𝑅))
59 0xr 11291 . . . . . . . . . . . . 13 0 ∈ ℝ*
60 pnfxr 11298 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
61 elicc1 13414 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
6259, 60, 61mp2an 692 . . . . . . . . . . . 12 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
6335, 62sylib 218 . . . . . . . . . . 11 (𝜑 → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
6463simp2d 1143 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑅)
6564adantr 480 . . . . . . . . 9 ((𝜑𝑎𝑆) → 0 ≤ 𝑅)
66 ge0gtmnf 13197 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → -∞ < 𝑅)
6737, 65, 66syl2anc 584 . . . . . . . 8 ((𝜑𝑎𝑆) → -∞ < 𝑅)
68 xrre 13194 . . . . . . . . 9 (((𝑅 ∈ ℝ* ∧ ((abs‘𝑎) + 1) ∈ ℝ) ∧ (-∞ < 𝑅𝑅 ≤ ((abs‘𝑎) + 1))) → 𝑅 ∈ ℝ)
6968expr 456 . . . . . . . 8 (((𝑅 ∈ ℝ* ∧ ((abs‘𝑎) + 1) ∈ ℝ) ∧ -∞ < 𝑅) → (𝑅 ≤ ((abs‘𝑎) + 1) → 𝑅 ∈ ℝ))
7037, 15, 67, 69syl21anc 837 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑅 ≤ ((abs‘𝑎) + 1) → 𝑅 ∈ ℝ))
7158, 70sylbird 260 . . . . . 6 ((𝜑𝑎𝑆) → (¬ ((abs‘𝑎) + 1) < 𝑅𝑅 ∈ ℝ))
7271con1d 145 . . . . 5 ((𝜑𝑎𝑆) → (¬ 𝑅 ∈ ℝ → ((abs‘𝑎) + 1) < 𝑅))
7372imp 406 . . . 4 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 1) < 𝑅)
7452, 53, 56, 73ifbothda 4546 . . 3 ((𝜑𝑎𝑆) → if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅)
751, 74eqbrtrid 5160 . 2 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
7651, 49, 753jca 1128 1 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  {crab 3420  wss 3933  ifcif 4507   class class class wbr 5125  cmpt 5207  ccnv 5666  dom cdm 5667  cima 5670   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  supcsup 9463  cc 11136  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   · cmul 11143  +∞cpnf 11275  -∞cmnf 11276  *cxr 11277   < clt 11278  cle 11279   / cdiv 11903  2c2 12304  0cn0 12510  +crp 13017  [,)cico 13372  [,]cicc 13373  seqcseq 14025  cexp 14085  abscabs 15256  cli 15503  Σcsu 15705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-rp 13018  df-ico 13376  df-icc 13377  df-fz 13531  df-seq 14026  df-exp 14086  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507
This theorem is referenced by:  psercn  26425  pserdvlem1  26426  pserdvlem2  26427  pserdv  26428
  Copyright terms: Public domain W3C validator