MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bldisj Structured version   Visualization version   GIF version

Theorem bldisj 24302
Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
bldisj (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅)

Proof of Theorem bldisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr3 1197 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))
2 simpr1 1195 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑅 ∈ ℝ*)
3 simpr2 1196 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑆 ∈ ℝ*)
42, 3xaddcld 13221 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑅 +𝑒 𝑆) ∈ ℝ*)
5 xmetcl 24235 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → (𝑃𝐷𝑄) ∈ ℝ*)
65adantr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑃𝐷𝑄) ∈ ℝ*)
74, 6xrlenltd 11200 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄) ↔ ¬ (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
81, 7mpbid 232 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ¬ (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆))
9 elin 3921 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)))
10 simpl1 1192 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝐷 ∈ (∞Met‘𝑋))
11 simpl2 1193 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑃𝑋)
12 elbl 24292 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
1310, 11, 2, 12syl3anc 1373 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
14 simpl3 1194 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑄𝑋)
15 elbl 24292 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1610, 14, 3, 15syl3anc 1373 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1713, 16anbi12d 632 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆))))
18 anandi 676 . . . . . 6 ((𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1917, 18bitr4di 289 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) ↔ (𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆))))
2010adantr 480 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2111adantr 480 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑃𝑋)
22 simpr 484 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑥𝑋)
23 xmetcl 24235 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
2420, 21, 22, 23syl3anc 1373 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
2514adantr 480 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑄𝑋)
26 xmetcl 24235 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑥𝑋) → (𝑄𝐷𝑥) ∈ ℝ*)
2720, 25, 22, 26syl3anc 1373 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑄𝐷𝑥) ∈ ℝ*)
282adantr 480 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
293adantr 480 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑆 ∈ ℝ*)
30 xlt2add 13180 . . . . . . . 8 ((((𝑃𝐷𝑥) ∈ ℝ* ∧ (𝑄𝐷𝑥) ∈ ℝ*) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆) → ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)))
3124, 27, 28, 29, 30syl22anc 838 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆) → ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)))
32 xmettri3 24257 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑃𝑋𝑄𝑋𝑥𝑋)) → (𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)))
3320, 21, 25, 22, 32syl13anc 1374 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)))
346adantr 480 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑃𝐷𝑄) ∈ ℝ*)
3524, 27xaddcld 13221 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∈ ℝ*)
364adantr 480 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑅 +𝑒 𝑆) ∈ ℝ*)
37 xrlelttr 13076 . . . . . . . . 9 (((𝑃𝐷𝑄) ∈ ℝ* ∧ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ∈ ℝ*) → (((𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∧ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
3834, 35, 36, 37syl3anc 1373 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∧ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
3933, 38mpand 695 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4031, 39syld 47 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4140expimpd 453 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4219, 41sylbid 240 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
439, 42biimtrid 242 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
448, 43mtod 198 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ¬ 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)))
4544eq0rdv 4360 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3904  c0 4286   class class class wbr 5095  cfv 6486  (class class class)co 7353  *cxr 11167   < clt 11168  cle 11169   +𝑒 cxad 13030  ∞Metcxmet 21264  ballcbl 21266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-xneg 13032  df-xadd 13033  df-psmet 21271  df-xmet 21272  df-bl 21274
This theorem is referenced by:  bl2in  24304  blcld  24409  methaus  24424  metnrmlem3  24766  cntotbnd  37775  heiborlem6  37795
  Copyright terms: Public domain W3C validator