| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supxrleub | Structured version Visualization version GIF version | ||
| Description: The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by NM, 22-Feb-2006.) (Revised by Mario Carneiro, 6-Sep-2014.) |
| Ref | Expression |
|---|---|
| supxrleub | ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supxrlub 13341 | . . . 4 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < sup(𝐴, ℝ*, < ) ↔ ∃𝑥 ∈ 𝐴 𝐵 < 𝑥)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 𝐵 < sup(𝐴, ℝ*, < ) ↔ ¬ ∃𝑥 ∈ 𝐴 𝐵 < 𝑥)) |
| 3 | ralnex 3062 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ↔ ¬ ∃𝑥 ∈ 𝐴 𝐵 < 𝑥) | |
| 4 | 2, 3 | bitr4di 289 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 𝐵 < sup(𝐴, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥)) |
| 5 | supxrcl 13331 | . . 3 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
| 6 | xrlenlt 11300 | . . 3 ⊢ ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ*, < ))) | |
| 7 | 5, 6 | sylan 580 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ*, < ))) |
| 8 | simpl 482 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ⊆ ℝ*) | |
| 9 | 8 | sselda 3958 | . . . 4 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
| 10 | simplr 768 | . . . 4 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
| 11 | 9, 10 | xrlenltd 11301 | . . 3 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥)) |
| 12 | 11 | ralbidva 3161 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥)) |
| 13 | 4, 7, 12 | 3bitr4d 311 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 class class class wbr 5119 supcsup 9452 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: supxrre 13343 supxrss 13348 ixxub 13383 limsupgord 15488 limsupgle 15493 prdsxmetlem 24307 ovollb2lem 25441 ovolunlem1 25450 ovoliunlem2 25456 ovolscalem1 25466 ovolicc1 25469 voliunlem2 25504 voliunlem3 25505 uniioovol 25532 uniioombllem3 25538 volsup2 25558 itg2leub 25687 itg2seq 25695 itg2mono 25706 itg2gt0 25713 itg2cn 25716 mdegleb 26021 radcnvlt1 26379 nmoubi 30753 nmopub 31889 nmfnleub 31906 esumgect 34121 prdsbnd 37817 rrnequiv 37859 suplesup2 45403 supxrleubrnmpt 45433 limsupmnflem 45749 liminfval2 45797 sge0fsum 46416 sge0lefi 46427 sge0split 46438 pimdecfgtioo 46746 pimincfltioo 46747 |
| Copyright terms: Public domain | W3C validator |