MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrleub Structured version   Visualization version   GIF version

Theorem supxrleub 13301
Description: The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by NM, 22-Feb-2006.) (Revised by Mario Carneiro, 6-Sep-2014.)
Assertion
Ref Expression
supxrleub ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem supxrleub
StepHypRef Expression
1 supxrlub 13300 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (𝐵 < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 𝐵 < 𝑥))
21notbid 318 . . 3 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < sup(𝐴, ℝ*, < ) ↔ ¬ ∃𝑥𝐴 𝐵 < 𝑥))
3 ralnex 3073 . . 3 (∀𝑥𝐴 ¬ 𝐵 < 𝑥 ↔ ¬ ∃𝑥𝐴 𝐵 < 𝑥)
42, 3bitr4di 289 . 2 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 ¬ 𝐵 < 𝑥))
5 supxrcl 13290 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
6 xrlenlt 11275 . . 3 ((sup(𝐴, ℝ*, < ) ∈ ℝ*𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ*, < )))
75, 6sylan 581 . 2 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ*, < )))
8 simpl 484 . . . . 5 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → 𝐴 ⊆ ℝ*)
98sselda 3981 . . . 4 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ*)
10 simplr 768 . . . 4 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
119, 10xrlenltd 11276 . . 3 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥𝐴) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
1211ralbidva 3176 . 2 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥𝐴 ¬ 𝐵 < 𝑥))
134, 7, 123bitr4d 311 1 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  wral 3062  wrex 3071  wss 3947   class class class wbr 5147  supcsup 9431  *cxr 11243   < clt 11244  cle 11245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443
This theorem is referenced by:  supxrre  13302  supxrss  13307  ixxub  13341  limsupgord  15412  limsupgle  15417  prdsxmetlem  23856  ovollb2lem  24987  ovolunlem1  24996  ovoliunlem2  25002  ovolscalem1  25012  ovolicc1  25015  voliunlem2  25050  voliunlem3  25051  uniioovol  25078  uniioombllem3  25084  volsup2  25104  itg2leub  25234  itg2seq  25242  itg2mono  25253  itg2gt0  25260  itg2cn  25263  mdegleb  25564  radcnvlt1  25912  nmoubi  30003  nmopub  31139  nmfnleub  31156  esumgect  33026  prdsbnd  36599  rrnequiv  36641  suplesup2  44021  supxrleubrnmpt  44051  limsupmnflem  44371  liminfval2  44419  sge0fsum  45038  sge0lefi  45049  sge0split  45060  pimdecfgtioo  45368  pimincfltioo  45369
  Copyright terms: Public domain W3C validator