MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrleub Structured version   Visualization version   GIF version

Theorem supxrleub 13337
Description: The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by NM, 22-Feb-2006.) (Revised by Mario Carneiro, 6-Sep-2014.)
Assertion
Ref Expression
supxrleub ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem supxrleub
StepHypRef Expression
1 supxrlub 13336 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (𝐵 < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 𝐵 < 𝑥))
21notbid 317 . . 3 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < sup(𝐴, ℝ*, < ) ↔ ¬ ∃𝑥𝐴 𝐵 < 𝑥))
3 ralnex 3062 . . 3 (∀𝑥𝐴 ¬ 𝐵 < 𝑥 ↔ ¬ ∃𝑥𝐴 𝐵 < 𝑥)
42, 3bitr4di 288 . 2 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < sup(𝐴, ℝ*, < ) ↔ ∀𝑥𝐴 ¬ 𝐵 < 𝑥))
5 supxrcl 13326 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
6 xrlenlt 11309 . . 3 ((sup(𝐴, ℝ*, < ) ∈ ℝ*𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ*, < )))
75, 6sylan 578 . 2 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup(𝐴, ℝ*, < )))
8 simpl 481 . . . . 5 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → 𝐴 ⊆ ℝ*)
98sselda 3972 . . . 4 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ*)
10 simplr 767 . . . 4 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ*)
119, 10xrlenltd 11310 . . 3 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥𝐴) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
1211ralbidva 3166 . 2 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥𝐴 ¬ 𝐵 < 𝑥))
134, 7, 123bitr4d 310 1 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wcel 2098  wral 3051  wrex 3060  wss 3939   class class class wbr 5143  supcsup 9463  *cxr 11277   < clt 11278  cle 11279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477
This theorem is referenced by:  supxrre  13338  supxrss  13343  ixxub  13377  limsupgord  15448  limsupgle  15453  prdsxmetlem  24292  ovollb2lem  25435  ovolunlem1  25444  ovoliunlem2  25450  ovolscalem1  25460  ovolicc1  25463  voliunlem2  25498  voliunlem3  25499  uniioovol  25526  uniioombllem3  25532  volsup2  25552  itg2leub  25682  itg2seq  25690  itg2mono  25701  itg2gt0  25708  itg2cn  25711  mdegleb  26018  radcnvlt1  26372  nmoubi  30626  nmopub  31762  nmfnleub  31779  esumgect  33766  prdsbnd  37323  rrnequiv  37365  suplesup2  44821  supxrleubrnmpt  44851  limsupmnflem  45171  liminfval2  45219  sge0fsum  45838  sge0lefi  45849  sge0split  45860  pimdecfgtioo  46168  pimincfltioo  46169
  Copyright terms: Public domain W3C validator