ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqadd12d Unicode version

Theorem modqadd12d 10184
Description: Additive property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
Hypotheses
Ref Expression
modqadd12d.1  |-  ( ph  ->  A  e.  QQ )
modqadd12d.2  |-  ( ph  ->  B  e.  QQ )
modqadd12d.3  |-  ( ph  ->  C  e.  QQ )
modqadd12d.4  |-  ( ph  ->  D  e.  QQ )
modqadd12d.5  |-  ( ph  ->  E  e.  QQ )
modqadd12d.egt0  |-  ( ph  ->  0  <  E )
modqadd12d.6  |-  ( ph  ->  ( A  mod  E
)  =  ( B  mod  E ) )
modqadd12d.7  |-  ( ph  ->  ( C  mod  E
)  =  ( D  mod  E ) )
Assertion
Ref Expression
modqadd12d  |-  ( ph  ->  ( ( A  +  C )  mod  E
)  =  ( ( B  +  D )  mod  E ) )

Proof of Theorem modqadd12d
StepHypRef Expression
1 modqadd12d.1 . . 3  |-  ( ph  ->  A  e.  QQ )
2 modqadd12d.2 . . 3  |-  ( ph  ->  B  e.  QQ )
3 modqadd12d.3 . . 3  |-  ( ph  ->  C  e.  QQ )
4 modqadd12d.5 . . 3  |-  ( ph  ->  E  e.  QQ )
5 modqadd12d.egt0 . . 3  |-  ( ph  ->  0  <  E )
6 modqadd12d.6 . . 3  |-  ( ph  ->  ( A  mod  E
)  =  ( B  mod  E ) )
71, 2, 3, 4, 5, 6modqadd1 10165 . 2  |-  ( ph  ->  ( ( A  +  C )  mod  E
)  =  ( ( B  +  C )  mod  E ) )
8 qcn 9453 . . . . . 6  |-  ( B  e.  QQ  ->  B  e.  CC )
92, 8syl 14 . . . . 5  |-  ( ph  ->  B  e.  CC )
10 qcn 9453 . . . . . 6  |-  ( C  e.  QQ  ->  C  e.  CC )
113, 10syl 14 . . . . 5  |-  ( ph  ->  C  e.  CC )
129, 11addcomd 7937 . . . 4  |-  ( ph  ->  ( B  +  C
)  =  ( C  +  B ) )
1312oveq1d 5797 . . 3  |-  ( ph  ->  ( ( B  +  C )  mod  E
)  =  ( ( C  +  B )  mod  E ) )
14 modqadd12d.4 . . . 4  |-  ( ph  ->  D  e.  QQ )
15 modqadd12d.7 . . . 4  |-  ( ph  ->  ( C  mod  E
)  =  ( D  mod  E ) )
163, 14, 2, 4, 5, 15modqadd1 10165 . . 3  |-  ( ph  ->  ( ( C  +  B )  mod  E
)  =  ( ( D  +  B )  mod  E ) )
17 qcn 9453 . . . . . 6  |-  ( D  e.  QQ  ->  D  e.  CC )
1814, 17syl 14 . . . . 5  |-  ( ph  ->  D  e.  CC )
1918, 9addcomd 7937 . . . 4  |-  ( ph  ->  ( D  +  B
)  =  ( B  +  D ) )
2019oveq1d 5797 . . 3  |-  ( ph  ->  ( ( D  +  B )  mod  E
)  =  ( ( B  +  D )  mod  E ) )
2113, 16, 203eqtrd 2177 . 2  |-  ( ph  ->  ( ( B  +  C )  mod  E
)  =  ( ( B  +  D )  mod  E ) )
227, 21eqtrd 2173 1  |-  ( ph  ->  ( ( A  +  C )  mod  E
)  =  ( ( B  +  D )  mod  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   CCcc 7642   0cc0 7644    + caddc 7647    < clt 7824   QQcq 9438    mod cmo 10126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-fl 10074  df-mod 10127
This theorem is referenced by:  modqsub12d  10185
  Copyright terms: Public domain W3C validator