ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulqaddmodid Unicode version

Theorem mulqaddmodid 9978
Description: The sum of a positive rational number less than an upper bound and the product of an integer and the upper bound is the positive rational number modulo the upper bound. (Contributed by Jim Kingdon, 23-Oct-2021.)
Assertion
Ref Expression
mulqaddmodid  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
( ( ( N  x.  M )  +  A )  mod  M
)  =  A )

Proof of Theorem mulqaddmodid
StepHypRef Expression
1 simpll 499 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  ->  N  e.  ZZ )
21zcnd 9026 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  ->  N  e.  CC )
3 qre 9267 . . . . . . 7  |-  ( M  e.  QQ  ->  M  e.  RR )
43ad2antlr 476 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  ->  M  e.  RR )
54recnd 7666 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  ->  M  e.  CC )
62, 5mulcld 7658 . . . 4  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
( N  x.  M
)  e.  CC )
7 simprr 502 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  ->  A  e.  ( 0 [,) M ) )
8 0red 7639 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
0  e.  RR )
94rexrd 7687 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  ->  M  e.  RR* )
10 elico2 9561 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  M  e.  RR* )  -> 
( A  e.  ( 0 [,) M )  <-> 
( A  e.  RR  /\  0  <_  A  /\  A  <  M ) ) )
118, 9, 10syl2anc 406 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
( A  e.  ( 0 [,) M )  <-> 
( A  e.  RR  /\  0  <_  A  /\  A  <  M ) ) )
127, 11mpbid 146 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
( A  e.  RR  /\  0  <_  A  /\  A  <  M ) )
1312simp1d 961 . . . . 5  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  ->  A  e.  RR )
1413recnd 7666 . . . 4  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  ->  A  e.  CC )
156, 14addcomd 7784 . . 3  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
( ( N  x.  M )  +  A
)  =  ( A  +  ( N  x.  M ) ) )
1615oveq1d 5721 . 2  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
( ( ( N  x.  M )  +  A )  mod  M
)  =  ( ( A  +  ( N  x.  M ) )  mod  M ) )
17 simprl 501 . . 3  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  ->  A  e.  QQ )
18 simplr 500 . . 3  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  ->  M  e.  QQ )
1912simp2d 962 . . . 4  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
0  <_  A )
2012simp3d 963 . . . 4  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  ->  A  <  M )
218, 13, 4, 19, 20lelttrd 7758 . . 3  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
0  <  M )
22 modqcyc 9973 . . 3  |-  ( ( ( A  e.  QQ  /\  N  e.  ZZ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  +  ( N  x.  M
) )  mod  M
)  =  ( A  mod  M ) )
2317, 1, 18, 21, 22syl22anc 1185 . 2  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
( ( A  +  ( N  x.  M
) )  mod  M
)  =  ( A  mod  M ) )
24 modqid 9963 . . 3  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ )  /\  ( 0  <_  A  /\  A  <  M
) )  ->  ( A  mod  M )  =  A )
2517, 18, 19, 20, 24syl22anc 1185 . 2  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
( A  mod  M
)  =  A )
2616, 23, 253eqtrd 2136 1  |-  ( ( ( N  e.  ZZ  /\  M  e.  QQ )  /\  ( A  e.  QQ  /\  A  e.  ( 0 [,) M
) ) )  -> 
( ( ( N  x.  M )  +  A )  mod  M
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 930    = wceq 1299    e. wcel 1448   class class class wbr 3875  (class class class)co 5706   RRcr 7499   0cc0 7500    + caddc 7503    x. cmul 7505   RR*cxr 7671    < clt 7672    <_ cle 7673   ZZcz 8906   QQcq 9261   [,)cico 9514    mod cmo 9936
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-n0 8830  df-z 8907  df-q 9262  df-rp 9292  df-ico 9518  df-fl 9884  df-mod 9937
This theorem is referenced by:  modqmuladd  9980  addmodid  9986
  Copyright terms: Public domain W3C validator