![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > apbtwnz | GIF version |
Description: There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.) |
Ref | Expression |
---|---|
apbtwnz | ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → 𝐴 ∈ ℝ) | |
2 | simpr 110 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝐴 < 𝑚) → 𝐴 < 𝑚) | |
3 | 2 | olcd 734 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝐴 < 𝑚) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
4 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | |
5 | 4 | zred 9346 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℝ) |
6 | 5 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 ∈ ℝ) |
7 | 1 | adantr 276 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℝ) |
8 | 7 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝐴 ∈ ℝ) |
9 | simpr 110 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 < 𝐴) | |
10 | 6, 8, 9 | ltled 8050 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 ≤ 𝐴) |
11 | 10 | orcd 733 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
12 | breq2 4002 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (𝐴 # 𝑛 ↔ 𝐴 # 𝑚)) | |
13 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → ∀𝑛 ∈ ℤ 𝐴 # 𝑛) | |
14 | 12, 13, 4 | rspcdva 2844 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝐴 # 𝑚) |
15 | reaplt 8519 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝐴 # 𝑚 ↔ (𝐴 < 𝑚 ∨ 𝑚 < 𝐴))) | |
16 | 7, 5, 15 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝐴 # 𝑚 ↔ (𝐴 < 𝑚 ∨ 𝑚 < 𝐴))) |
17 | 14, 16 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝐴 < 𝑚 ∨ 𝑚 < 𝐴)) |
18 | 3, 11, 17 | mpjaodan 798 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
19 | 1, 18 | exbtwnzlemex 10218 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
20 | 19, 1 | exbtwnz 10219 | 1 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 ∈ wcel 2146 ∀wral 2453 ∃!wreu 2455 class class class wbr 3998 (class class class)co 5865 ℝcr 7785 1c1 7787 + caddc 7789 < clt 7966 ≤ cle 7967 # cap 8512 ℤcz 9224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-arch 7905 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-inn 8891 df-n0 9148 df-z 9225 |
This theorem is referenced by: flapcl 10243 |
Copyright terms: Public domain | W3C validator |