![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > apbtwnz | GIF version |
Description: There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.) |
Ref | Expression |
---|---|
apbtwnz | ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → 𝐴 ∈ ℝ) | |
2 | simpr 110 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝐴 < 𝑚) → 𝐴 < 𝑚) | |
3 | 2 | olcd 735 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝐴 < 𝑚) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
4 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | |
5 | 4 | zred 9406 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℝ) |
6 | 5 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 ∈ ℝ) |
7 | 1 | adantr 276 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℝ) |
8 | 7 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝐴 ∈ ℝ) |
9 | simpr 110 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 < 𝐴) | |
10 | 6, 8, 9 | ltled 8107 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 ≤ 𝐴) |
11 | 10 | orcd 734 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
12 | breq2 4022 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (𝐴 # 𝑛 ↔ 𝐴 # 𝑚)) | |
13 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → ∀𝑛 ∈ ℤ 𝐴 # 𝑛) | |
14 | 12, 13, 4 | rspcdva 2861 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝐴 # 𝑚) |
15 | reaplt 8576 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝐴 # 𝑚 ↔ (𝐴 < 𝑚 ∨ 𝑚 < 𝐴))) | |
16 | 7, 5, 15 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝐴 # 𝑚 ↔ (𝐴 < 𝑚 ∨ 𝑚 < 𝐴))) |
17 | 14, 16 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝐴 < 𝑚 ∨ 𝑚 < 𝐴)) |
18 | 3, 11, 17 | mpjaodan 799 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
19 | 1, 18 | exbtwnzlemex 10282 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
20 | 19, 1 | exbtwnz 10283 | 1 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∈ wcel 2160 ∀wral 2468 ∃!wreu 2470 class class class wbr 4018 (class class class)co 5897 ℝcr 7841 1c1 7843 + caddc 7845 < clt 8023 ≤ cle 8024 # cap 8569 ℤcz 9284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-arch 7961 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-inn 8951 df-n0 9208 df-z 9285 |
This theorem is referenced by: flapcl 10308 |
Copyright terms: Public domain | W3C validator |