![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > apbtwnz | GIF version |
Description: There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.) |
Ref | Expression |
---|---|
apbtwnz | ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → 𝐴 ∈ ℝ) | |
2 | simpr 110 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝐴 < 𝑚) → 𝐴 < 𝑚) | |
3 | 2 | olcd 735 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝐴 < 𝑚) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
4 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | |
5 | 4 | zred 9439 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℝ) |
6 | 5 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 ∈ ℝ) |
7 | 1 | adantr 276 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℝ) |
8 | 7 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝐴 ∈ ℝ) |
9 | simpr 110 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 < 𝐴) | |
10 | 6, 8, 9 | ltled 8138 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 ≤ 𝐴) |
11 | 10 | orcd 734 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
12 | breq2 4033 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (𝐴 # 𝑛 ↔ 𝐴 # 𝑚)) | |
13 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → ∀𝑛 ∈ ℤ 𝐴 # 𝑛) | |
14 | 12, 13, 4 | rspcdva 2869 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝐴 # 𝑚) |
15 | reaplt 8607 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝐴 # 𝑚 ↔ (𝐴 < 𝑚 ∨ 𝑚 < 𝐴))) | |
16 | 7, 5, 15 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝐴 # 𝑚 ↔ (𝐴 < 𝑚 ∨ 𝑚 < 𝐴))) |
17 | 14, 16 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝐴 < 𝑚 ∨ 𝑚 < 𝐴)) |
18 | 3, 11, 17 | mpjaodan 799 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
19 | 1, 18 | exbtwnzlemex 10318 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
20 | 19, 1 | exbtwnz 10319 | 1 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∈ wcel 2164 ∀wral 2472 ∃!wreu 2474 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 1c1 7873 + caddc 7875 < clt 8054 ≤ cle 8055 # cap 8600 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-arch 7991 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-inn 8983 df-n0 9241 df-z 9318 |
This theorem is referenced by: flapcl 10344 |
Copyright terms: Public domain | W3C validator |