| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apbtwnz | GIF version | ||
| Description: There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.) |
| Ref | Expression |
|---|---|
| apbtwnz | ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → 𝐴 ∈ ℝ) | |
| 2 | simpr 110 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝐴 < 𝑚) → 𝐴 < 𝑚) | |
| 3 | 2 | olcd 735 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝐴 < 𝑚) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
| 4 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | |
| 5 | 4 | zred 9465 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℝ) |
| 6 | 5 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 ∈ ℝ) |
| 7 | 1 | adantr 276 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℝ) |
| 8 | 7 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝐴 ∈ ℝ) |
| 9 | simpr 110 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 < 𝐴) | |
| 10 | 6, 8, 9 | ltled 8162 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 ≤ 𝐴) |
| 11 | 10 | orcd 734 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
| 12 | breq2 4038 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (𝐴 # 𝑛 ↔ 𝐴 # 𝑚)) | |
| 13 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → ∀𝑛 ∈ ℤ 𝐴 # 𝑛) | |
| 14 | 12, 13, 4 | rspcdva 2873 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝐴 # 𝑚) |
| 15 | reaplt 8632 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝐴 # 𝑚 ↔ (𝐴 < 𝑚 ∨ 𝑚 < 𝐴))) | |
| 16 | 7, 5, 15 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝐴 # 𝑚 ↔ (𝐴 < 𝑚 ∨ 𝑚 < 𝐴))) |
| 17 | 14, 16 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝐴 < 𝑚 ∨ 𝑚 < 𝐴)) |
| 18 | 3, 11, 17 | mpjaodan 799 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
| 19 | 1, 18 | exbtwnzlemex 10356 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
| 20 | 19, 1 | exbtwnz 10357 | 1 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∈ wcel 2167 ∀wral 2475 ∃!wreu 2477 class class class wbr 4034 (class class class)co 5925 ℝcr 7895 1c1 7897 + caddc 7899 < clt 8078 ≤ cle 8079 # cap 8625 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-inn 9008 df-n0 9267 df-z 9344 |
| This theorem is referenced by: flapcl 10382 |
| Copyright terms: Public domain | W3C validator |