| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apbtwnz | GIF version | ||
| Description: There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.) |
| Ref | Expression |
|---|---|
| apbtwnz | ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → 𝐴 ∈ ℝ) | |
| 2 | simpr 110 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝐴 < 𝑚) → 𝐴 < 𝑚) | |
| 3 | 2 | olcd 736 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝐴 < 𝑚) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
| 4 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ) | |
| 5 | 4 | zred 9510 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℝ) |
| 6 | 5 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 ∈ ℝ) |
| 7 | 1 | adantr 276 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℝ) |
| 8 | 7 | adantr 276 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝐴 ∈ ℝ) |
| 9 | simpr 110 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 < 𝐴) | |
| 10 | 6, 8, 9 | ltled 8206 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → 𝑚 ≤ 𝐴) |
| 11 | 10 | orcd 735 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) ∧ 𝑚 < 𝐴) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
| 12 | breq2 4054 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (𝐴 # 𝑛 ↔ 𝐴 # 𝑚)) | |
| 13 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → ∀𝑛 ∈ ℤ 𝐴 # 𝑛) | |
| 14 | 12, 13, 4 | rspcdva 2886 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → 𝐴 # 𝑚) |
| 15 | reaplt 8676 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝐴 # 𝑚 ↔ (𝐴 < 𝑚 ∨ 𝑚 < 𝐴))) | |
| 16 | 7, 5, 15 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝐴 # 𝑚 ↔ (𝐴 < 𝑚 ∨ 𝑚 < 𝐴))) |
| 17 | 14, 16 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝐴 < 𝑚 ∨ 𝑚 < 𝐴)) |
| 18 | 3, 11, 17 | mpjaodan 800 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ 𝐴 ∨ 𝐴 < 𝑚)) |
| 19 | 1, 18 | exbtwnzlemex 10409 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
| 20 | 19, 1 | exbtwnz 10410 | 1 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℤ 𝐴 # 𝑛) → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∈ wcel 2177 ∀wral 2485 ∃!wreu 2487 class class class wbr 4050 (class class class)co 5956 ℝcr 7939 1c1 7941 + caddc 7943 < clt 8122 ≤ cle 8123 # cap 8669 ℤcz 9387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-arch 8059 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-inn 9052 df-n0 9311 df-z 9388 |
| This theorem is referenced by: flapcl 10435 |
| Copyright terms: Public domain | W3C validator |