ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abslt Unicode version

Theorem abslt 11138
Description: Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abslt  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <  B  <->  ( -u B  <  A  /\  A  < 
B ) ) )

Proof of Theorem abslt
StepHypRef Expression
1 simpll 527 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  A  e.  RR )
21renegcld 8372 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  -> 
-u A  e.  RR )
31recnd 8021 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  A  e.  CC )
4 abscl 11101 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
53, 4syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  ( abs `  A
)  e.  RR )
6 simplr 528 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  B  e.  RR )
7 leabs 11124 . . . . . . 7  |-  ( -u A  e.  RR  ->  -u A  <_  ( abs `  -u A
) )
82, 7syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  -> 
-u A  <_  ( abs `  -u A ) )
9 absneg 11100 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  -u A )  =  ( abs `  A
) )
103, 9syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  ( abs `  -u A
)  =  ( abs `  A ) )
118, 10breqtrd 4047 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  -> 
-u A  <_  ( abs `  A ) )
12 simpr 110 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  ( abs `  A
)  <  B )
132, 5, 6, 11, 12lelttrd 8117 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  -> 
-u A  <  B
)
14 leabs 11124 . . . . . 6  |-  ( A  e.  RR  ->  A  <_  ( abs `  A
) )
1514ad2antrr 488 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  A  <_  ( abs `  A ) )
161, 5, 6, 15, 12lelttrd 8117 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  A  <  B )
1713, 16jca 306 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <  B )  ->  ( -u A  < 
B  /\  A  <  B ) )
18 simpll 527 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <  B  /\  A  < 
B ) )  ->  A  e.  RR )
19 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  e.  RR )
2019recnd 8021 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  e.  CC )
2120, 9syl 14 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  -u A )  =  ( abs `  A
) )
2219renegcld 8372 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  -u A  e.  RR )
23 0red 7993 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  0  e.  RR )
24 ltabs 11137 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  <  0 )
2519, 23, 24ltled 8111 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  <_  0 )
2619le0neg1d 8509 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( A  <_  0  <->  0  <_  -u A ) )
2725, 26mpbid 147 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  0  <_ 
-u A )
28 absid 11121 . . . . . . . 8  |-  ( (
-u A  e.  RR  /\  0  <_  -u A )  ->  ( abs `  -u A
)  =  -u A
)
2922, 27, 28syl2anc 411 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  -u A )  = 
-u A )
3021, 29eqtr3d 2224 . . . . . 6  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  A )  = 
-u A )
3118, 30sylan 283 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <  B  /\  A  <  B ) )  /\  A  <  ( abs `  A ) )  ->  ( abs `  A
)  =  -u A
)
32 simplrl 535 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <  B  /\  A  <  B ) )  /\  A  <  ( abs `  A ) )  ->  -u A  <  B
)
3331, 32eqbrtrd 4043 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <  B  /\  A  <  B ) )  /\  A  <  ( abs `  A ) )  ->  ( abs `  A
)  <  B )
34 simpr 110 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <  B  /\  A  <  B ) )  /\  ( abs `  A
)  <  B )  ->  ( abs `  A
)  <  B )
35 simprr 531 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <  B  /\  A  < 
B ) )  ->  A  <  B )
36 simplr 528 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <  B  /\  A  < 
B ) )  ->  B  e.  RR )
3718recnd 8021 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <  B  /\  A  < 
B ) )  ->  A  e.  CC )
3837, 4syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <  B  /\  A  < 
B ) )  -> 
( abs `  A
)  e.  RR )
39 axltwlin 8060 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( abs `  A )  e.  RR )  ->  ( A  <  B  ->  ( A  <  ( abs `  A
)  \/  ( abs `  A )  <  B
) ) )
4018, 36, 38, 39syl3anc 1249 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <  B  /\  A  < 
B ) )  -> 
( A  <  B  ->  ( A  <  ( abs `  A )  \/  ( abs `  A
)  <  B )
) )
4135, 40mpd 13 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <  B  /\  A  < 
B ) )  -> 
( A  <  ( abs `  A )  \/  ( abs `  A
)  <  B )
)
4233, 34, 41mpjaodan 799 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <  B  /\  A  < 
B ) )  -> 
( abs `  A
)  <  B )
4317, 42impbida 596 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <  B  <->  ( -u A  <  B  /\  A  < 
B ) ) )
44 ltnegcon1 8455 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  < 
B  <->  -u B  <  A
) )
4544anbi1d 465 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -u A  <  B  /\  A  < 
B )  <->  ( -u B  <  A  /\  A  < 
B ) ) )
4643, 45bitrd 188 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <  B  <->  ( -u B  <  A  /\  A  < 
B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2160   class class class wbr 4021   ` cfv 5238   CCcc 7844   RRcr 7845   0cc0 7846    < clt 8027    <_ cle 8028   -ucneg 8164   abscabs 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964  ax-arch 7965  ax-caucvg 7966
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-n0 9212  df-z 9289  df-uz 9564  df-rp 9690  df-seqfrec 10485  df-exp 10560  df-cj 10892  df-re 10893  df-im 10894  df-rsqrt 11048  df-abs 11049
This theorem is referenced by:  absdiflt  11142  abslti  11188  absltd  11224
  Copyright terms: Public domain W3C validator