ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2 GIF version

Theorem clim2 10564
Description: Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴, with more general quantifier restrictions than clim 10562. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
clim2.1 𝑍 = (ℤ𝑀)
clim2.2 (𝜑𝑀 ∈ ℤ)
clim2.3 (𝜑𝐹𝑉)
clim2.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
Assertion
Ref Expression
clim2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑘)   𝑉(𝑥,𝑗,𝑘)   𝑍(𝑥)

Proof of Theorem clim2
StepHypRef Expression
1 clim2.3 . . 3 (𝜑𝐹𝑉)
2 eqidd 2086 . . 3 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
31, 2clim 10562 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
4 clim2.1 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
54uztrn2 8968 . . . . . . . . 9 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6 clim2.4 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
76eleq1d 2153 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝐹𝑘) ∈ ℂ ↔ 𝐵 ∈ ℂ))
86oveq1d 5628 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → ((𝐹𝑘) − 𝐴) = (𝐵𝐴))
98fveq2d 5272 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(𝐵𝐴)))
109breq1d 3830 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑥))
117, 10anbi12d 457 . . . . . . . . 9 ((𝜑𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
125, 11sylan2 280 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
1312anassrs 392 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
1413ralbidva 2372 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
1514rexbidva 2373 . . . . 5 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
16 clim2.2 . . . . . 6 (𝜑𝑀 ∈ ℤ)
174rexuz3 10318 . . . . . 6 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
1816, 17syl 14 . . . . 5 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
1915, 18bitr3d 188 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2019ralbidv 2376 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2120anbi2d 452 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
223, 21bitr4d 189 1 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  wral 2355  wrex 2356   class class class wbr 3820  cfv 4981  (class class class)co 5613  cc 7292   < clt 7466  cmin 7597  cz 8683  cuz 8951  +crp 9066  abscabs 10325  cli 10559
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-addcom 7389  ax-addass 7391  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-0id 7397  ax-rnegex 7398  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-br 3821  df-opab 3875  df-mpt 3876  df-id 4094  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-inn 8358  df-n0 8607  df-z 8684  df-uz 8952  df-clim 10560
This theorem is referenced by:  clim2c  10565  clim0  10566  climi  10568  climeq  10580
  Copyright terms: Public domain W3C validator