| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climmpt | GIF version | ||
| Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| 2clim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climmpt.2 | ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climmpt | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2clim.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | simpr 110 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
| 3 | climmpt.2 | . . . 4 ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) | |
| 4 | uzf 9733 | . . . . . . . 8 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 5 | 4 | ffvelcdmi 5771 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
| 6 | elex 2811 | . . . . . . 7 ⊢ ((ℤ≥‘𝑀) ∈ 𝒫 ℤ → (ℤ≥‘𝑀) ∈ V) | |
| 7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ V) |
| 8 | 1, 7 | eqeltrid 2316 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑍 ∈ V) |
| 9 | mptexg 5868 | . . . . 5 ⊢ (𝑍 ∈ V → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V) | |
| 10 | 8, 9 | syl 14 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V) |
| 11 | 3, 10 | eqeltrid 2316 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝐺 ∈ V) |
| 12 | 11 | adantr 276 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐺 ∈ V) |
| 13 | simpl 109 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝑀 ∈ ℤ) | |
| 14 | simpr 110 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) | |
| 15 | fvexg 5648 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ V) | |
| 16 | 15 | adantll 476 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ V) |
| 17 | fveq2 5629 | . . . . 5 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
| 18 | 17, 3 | fvmptg 5712 | . . . 4 ⊢ ((𝑚 ∈ 𝑍 ∧ (𝐹‘𝑚) ∈ V) → (𝐺‘𝑚) = (𝐹‘𝑚)) |
| 19 | 14, 16, 18 | syl2anc 411 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐺‘𝑚) = (𝐹‘𝑚)) |
| 20 | 19 | eqcomd 2235 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) = (𝐺‘𝑚)) |
| 21 | 1, 2, 12, 13, 20 | climeq 11818 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 𝒫 cpw 3649 class class class wbr 4083 ↦ cmpt 4145 ‘cfv 5318 ℤcz 9454 ℤ≥cuz 9730 ⇝ cli 11797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-clim 11798 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |