| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > climmpt | GIF version | ||
| Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.) | 
| Ref | Expression | 
|---|---|
| 2clim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) | 
| climmpt.2 | ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) | 
| Ref | Expression | 
|---|---|
| climmpt | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2clim.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | simpr 110 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
| 3 | climmpt.2 | . . . 4 ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) | |
| 4 | uzf 9604 | . . . . . . . 8 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 5 | 4 | ffvelcdmi 5696 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) | 
| 6 | elex 2774 | . . . . . . 7 ⊢ ((ℤ≥‘𝑀) ∈ 𝒫 ℤ → (ℤ≥‘𝑀) ∈ V) | |
| 7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ V) | 
| 8 | 1, 7 | eqeltrid 2283 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑍 ∈ V) | 
| 9 | mptexg 5787 | . . . . 5 ⊢ (𝑍 ∈ V → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V) | |
| 10 | 8, 9 | syl 14 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V) | 
| 11 | 3, 10 | eqeltrid 2283 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝐺 ∈ V) | 
| 12 | 11 | adantr 276 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐺 ∈ V) | 
| 13 | simpl 109 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝑀 ∈ ℤ) | |
| 14 | simpr 110 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) | |
| 15 | fvexg 5577 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ V) | |
| 16 | 15 | adantll 476 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ V) | 
| 17 | fveq2 5558 | . . . . 5 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
| 18 | 17, 3 | fvmptg 5637 | . . . 4 ⊢ ((𝑚 ∈ 𝑍 ∧ (𝐹‘𝑚) ∈ V) → (𝐺‘𝑚) = (𝐹‘𝑚)) | 
| 19 | 14, 16, 18 | syl2anc 411 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐺‘𝑚) = (𝐹‘𝑚)) | 
| 20 | 19 | eqcomd 2202 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) = (𝐺‘𝑚)) | 
| 21 | 1, 2, 12, 13, 20 | climeq 11464 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 𝒫 cpw 3605 class class class wbr 4033 ↦ cmpt 4094 ‘cfv 5258 ℤcz 9326 ℤ≥cuz 9601 ⇝ cli 11443 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-clim 11444 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |