ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climmpt GIF version

Theorem climmpt 11446
Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1 𝑍 = (ℤ𝑀)
climmpt.2 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
Assertion
Ref Expression
climmpt ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climmpt
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 2clim.1 . 2 𝑍 = (ℤ𝑀)
2 simpr 110 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐹𝑉)
3 climmpt.2 . . . 4 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
4 uzf 9598 . . . . . . . 8 :ℤ⟶𝒫 ℤ
54ffvelcdmi 5693 . . . . . . 7 (𝑀 ∈ ℤ → (ℤ𝑀) ∈ 𝒫 ℤ)
6 elex 2771 . . . . . . 7 ((ℤ𝑀) ∈ 𝒫 ℤ → (ℤ𝑀) ∈ V)
75, 6syl 14 . . . . . 6 (𝑀 ∈ ℤ → (ℤ𝑀) ∈ V)
81, 7eqeltrid 2280 . . . . 5 (𝑀 ∈ ℤ → 𝑍 ∈ V)
9 mptexg 5784 . . . . 5 (𝑍 ∈ V → (𝑘𝑍 ↦ (𝐹𝑘)) ∈ V)
108, 9syl 14 . . . 4 (𝑀 ∈ ℤ → (𝑘𝑍 ↦ (𝐹𝑘)) ∈ V)
113, 10eqeltrid 2280 . . 3 (𝑀 ∈ ℤ → 𝐺 ∈ V)
1211adantr 276 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐺 ∈ V)
13 simpl 109 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝑀 ∈ ℤ)
14 simpr 110 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚𝑍) → 𝑚𝑍)
15 fvexg 5574 . . . . 5 ((𝐹𝑉𝑚𝑍) → (𝐹𝑚) ∈ V)
1615adantll 476 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚𝑍) → (𝐹𝑚) ∈ V)
17 fveq2 5555 . . . . 5 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
1817, 3fvmptg 5634 . . . 4 ((𝑚𝑍 ∧ (𝐹𝑚) ∈ V) → (𝐺𝑚) = (𝐹𝑚))
1914, 16, 18syl2anc 411 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚𝑍) → (𝐺𝑚) = (𝐹𝑚))
2019eqcomd 2199 . 2 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚𝑍) → (𝐹𝑚) = (𝐺𝑚))
211, 2, 12, 13, 20climeq 11445 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  𝒫 cpw 3602   class class class wbr 4030  cmpt 4091  cfv 5255  cz 9320  cuz 9595  cli 11424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-clim 11425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator