![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climmpt | GIF version |
Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
2clim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climmpt.2 | ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climmpt | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2clim.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | simpr 110 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
3 | climmpt.2 | . . . 4 ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) | |
4 | uzf 9545 | . . . . . . . 8 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
5 | 4 | ffvelcdmi 5663 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
6 | elex 2760 | . . . . . . 7 ⊢ ((ℤ≥‘𝑀) ∈ 𝒫 ℤ → (ℤ≥‘𝑀) ∈ V) | |
7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ V) |
8 | 1, 7 | eqeltrid 2274 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑍 ∈ V) |
9 | mptexg 5754 | . . . . 5 ⊢ (𝑍 ∈ V → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V) |
11 | 3, 10 | eqeltrid 2274 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝐺 ∈ V) |
12 | 11 | adantr 276 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐺 ∈ V) |
13 | simpl 109 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝑀 ∈ ℤ) | |
14 | simpr 110 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) | |
15 | fvexg 5546 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ V) | |
16 | 15 | adantll 476 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ V) |
17 | fveq2 5527 | . . . . 5 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
18 | 17, 3 | fvmptg 5605 | . . . 4 ⊢ ((𝑚 ∈ 𝑍 ∧ (𝐹‘𝑚) ∈ V) → (𝐺‘𝑚) = (𝐹‘𝑚)) |
19 | 14, 16, 18 | syl2anc 411 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐺‘𝑚) = (𝐹‘𝑚)) |
20 | 19 | eqcomd 2193 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) = (𝐺‘𝑚)) |
21 | 1, 2, 12, 13, 20 | climeq 11321 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 ∈ wcel 2158 Vcvv 2749 𝒫 cpw 3587 class class class wbr 4015 ↦ cmpt 4076 ‘cfv 5228 ℤcz 9267 ℤ≥cuz 9542 ⇝ cli 11300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-inn 8934 df-n0 9191 df-z 9268 df-uz 9543 df-clim 11301 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |