ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climmpt GIF version

Theorem climmpt 11465
Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1 𝑍 = (ℤ𝑀)
climmpt.2 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
Assertion
Ref Expression
climmpt ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climmpt
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 2clim.1 . 2 𝑍 = (ℤ𝑀)
2 simpr 110 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐹𝑉)
3 climmpt.2 . . . 4 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
4 uzf 9604 . . . . . . . 8 :ℤ⟶𝒫 ℤ
54ffvelcdmi 5696 . . . . . . 7 (𝑀 ∈ ℤ → (ℤ𝑀) ∈ 𝒫 ℤ)
6 elex 2774 . . . . . . 7 ((ℤ𝑀) ∈ 𝒫 ℤ → (ℤ𝑀) ∈ V)
75, 6syl 14 . . . . . 6 (𝑀 ∈ ℤ → (ℤ𝑀) ∈ V)
81, 7eqeltrid 2283 . . . . 5 (𝑀 ∈ ℤ → 𝑍 ∈ V)
9 mptexg 5787 . . . . 5 (𝑍 ∈ V → (𝑘𝑍 ↦ (𝐹𝑘)) ∈ V)
108, 9syl 14 . . . 4 (𝑀 ∈ ℤ → (𝑘𝑍 ↦ (𝐹𝑘)) ∈ V)
113, 10eqeltrid 2283 . . 3 (𝑀 ∈ ℤ → 𝐺 ∈ V)
1211adantr 276 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐺 ∈ V)
13 simpl 109 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝑀 ∈ ℤ)
14 simpr 110 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚𝑍) → 𝑚𝑍)
15 fvexg 5577 . . . . 5 ((𝐹𝑉𝑚𝑍) → (𝐹𝑚) ∈ V)
1615adantll 476 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚𝑍) → (𝐹𝑚) ∈ V)
17 fveq2 5558 . . . . 5 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
1817, 3fvmptg 5637 . . . 4 ((𝑚𝑍 ∧ (𝐹𝑚) ∈ V) → (𝐺𝑚) = (𝐹𝑚))
1914, 16, 18syl2anc 411 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚𝑍) → (𝐺𝑚) = (𝐹𝑚))
2019eqcomd 2202 . 2 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚𝑍) → (𝐹𝑚) = (𝐺𝑚))
211, 2, 12, 13, 20climeq 11464 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  𝒫 cpw 3605   class class class wbr 4033  cmpt 4094  cfv 5258  cz 9326  cuz 9601  cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-clim 11444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator