![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climmpt | GIF version |
Description: Exhibit a function πΊ with the same convergence properties as the not-quite-function πΉ. (Contributed by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
2clim.1 | β’ π = (β€β₯βπ) |
climmpt.2 | β’ πΊ = (π β π β¦ (πΉβπ)) |
Ref | Expression |
---|---|
climmpt | β’ ((π β β€ β§ πΉ β π) β (πΉ β π΄ β πΊ β π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2clim.1 | . 2 β’ π = (β€β₯βπ) | |
2 | simpr 110 | . 2 β’ ((π β β€ β§ πΉ β π) β πΉ β π) | |
3 | climmpt.2 | . . . 4 β’ πΊ = (π β π β¦ (πΉβπ)) | |
4 | uzf 9534 | . . . . . . . 8 β’ β€β₯:β€βΆπ« β€ | |
5 | 4 | ffvelcdmi 5653 | . . . . . . 7 β’ (π β β€ β (β€β₯βπ) β π« β€) |
6 | elex 2750 | . . . . . . 7 β’ ((β€β₯βπ) β π« β€ β (β€β₯βπ) β V) | |
7 | 5, 6 | syl 14 | . . . . . 6 β’ (π β β€ β (β€β₯βπ) β V) |
8 | 1, 7 | eqeltrid 2264 | . . . . 5 β’ (π β β€ β π β V) |
9 | mptexg 5744 | . . . . 5 β’ (π β V β (π β π β¦ (πΉβπ)) β V) | |
10 | 8, 9 | syl 14 | . . . 4 β’ (π β β€ β (π β π β¦ (πΉβπ)) β V) |
11 | 3, 10 | eqeltrid 2264 | . . 3 β’ (π β β€ β πΊ β V) |
12 | 11 | adantr 276 | . 2 β’ ((π β β€ β§ πΉ β π) β πΊ β V) |
13 | simpl 109 | . 2 β’ ((π β β€ β§ πΉ β π) β π β β€) | |
14 | simpr 110 | . . . 4 β’ (((π β β€ β§ πΉ β π) β§ π β π) β π β π) | |
15 | fvexg 5536 | . . . . 5 β’ ((πΉ β π β§ π β π) β (πΉβπ) β V) | |
16 | 15 | adantll 476 | . . . 4 β’ (((π β β€ β§ πΉ β π) β§ π β π) β (πΉβπ) β V) |
17 | fveq2 5517 | . . . . 5 β’ (π = π β (πΉβπ) = (πΉβπ)) | |
18 | 17, 3 | fvmptg 5595 | . . . 4 β’ ((π β π β§ (πΉβπ) β V) β (πΊβπ) = (πΉβπ)) |
19 | 14, 16, 18 | syl2anc 411 | . . 3 β’ (((π β β€ β§ πΉ β π) β§ π β π) β (πΊβπ) = (πΉβπ)) |
20 | 19 | eqcomd 2183 | . 2 β’ (((π β β€ β§ πΉ β π) β§ π β π) β (πΉβπ) = (πΊβπ)) |
21 | 1, 2, 12, 13, 20 | climeq 11310 | 1 β’ ((π β β€ β§ πΉ β π) β (πΉ β π΄ β πΊ β π΄)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 Vcvv 2739 π« cpw 3577 class class class wbr 4005 β¦ cmpt 4066 βcfv 5218 β€cz 9256 β€β₯cuz 9531 β cli 11289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-n0 9180 df-z 9257 df-uz 9532 df-clim 11290 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |