Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  cndcap Unicode version

Theorem cndcap 15790
Description: Real number trichotomy is equivalent to decidability of complex number apartness. (Contributed by Jim Kingdon, 10-Apr-2025.)
Assertion
Ref Expression
cndcap  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. z  e.  CC  A. w  e.  CC DECID  z #  w )
Distinct variable group:    x, w, y, z

Proof of Theorem cndcap
StepHypRef Expression
1 breq2 4038 . . . . . . 7  |-  ( y  =  ( Re `  w )  ->  (
( Re `  z
) #  y  <->  ( Re `  z ) #  ( Re
`  w ) ) )
21dcbid 839 . . . . . 6  |-  ( y  =  ( Re `  w )  ->  (DECID  (
Re `  z ) #  y 
<-> DECID  ( Re `  z ) #  ( Re `  w
) ) )
3 breq1 4037 . . . . . . . . 9  |-  ( x  =  ( Re `  z )  ->  (
x #  y  <->  ( Re `  z ) #  y ) )
43dcbid 839 . . . . . . . 8  |-  ( x  =  ( Re `  z )  ->  (DECID  x #  y 
<-> DECID  ( Re `  z ) #  y ) )
54ralbidv 2497 . . . . . . 7  |-  ( x  =  ( Re `  z )  ->  ( A. y  e.  RR DECID  x #  y 
<-> 
A. y  e.  RR DECID  (
Re `  z ) #  y ) )
6 triap 15760 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <-> DECID  x #  y )
)
76ralbidva 2493 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  <->  A. y  e.  RR DECID  x #  y ) )
87ralbiia 2511 . . . . . . . . 9  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  A. y  e.  RR DECID  x #  y )
98biimpi 120 . . . . . . . 8  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. x  e.  RR  A. y  e.  RR DECID  x #  y )
109adantr 276 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  ->  A. x  e.  RR  A. y  e.  RR DECID  x #  y )
11 simprl 529 . . . . . . . 8  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  ->  z  e.  CC )
1211recld 11120 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  ->  ( Re `  z )  e.  RR )
135, 10, 12rspcdva 2873 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  ->  A. y  e.  RR DECID  ( Re `  z
) #  y )
14 simprr 531 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  ->  w  e.  CC )
1514recld 11120 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  ->  ( Re `  w )  e.  RR )
162, 13, 15rspcdva 2873 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  -> DECID  ( Re `  z
) #  ( Re `  w ) )
17 breq2 4038 . . . . . . 7  |-  ( y  =  ( Im `  w )  ->  (
( Im `  z
) #  y  <->  ( Im `  z ) #  ( Im
`  w ) ) )
1817dcbid 839 . . . . . 6  |-  ( y  =  ( Im `  w )  ->  (DECID  (
Im `  z ) #  y 
<-> DECID  ( Im `  z ) #  ( Im `  w
) ) )
19 breq1 4037 . . . . . . . . 9  |-  ( x  =  ( Im `  z )  ->  (
x #  y  <->  ( Im `  z ) #  y ) )
2019dcbid 839 . . . . . . . 8  |-  ( x  =  ( Im `  z )  ->  (DECID  x #  y 
<-> DECID  ( Im `  z ) #  y ) )
2120ralbidv 2497 . . . . . . 7  |-  ( x  =  ( Im `  z )  ->  ( A. y  e.  RR DECID  x #  y 
<-> 
A. y  e.  RR DECID  (
Im `  z ) #  y ) )
2211imcld 11121 . . . . . . 7  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  ->  ( Im `  z )  e.  RR )
2321, 10, 22rspcdva 2873 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  ->  A. y  e.  RR DECID  ( Im `  z
) #  y )
2414imcld 11121 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  ->  ( Im `  w )  e.  RR )
2518, 23, 24rspcdva 2873 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  -> DECID  ( Im `  z
) #  ( Im `  w ) )
26 dcor 937 . . . . 5  |-  (DECID  ( Re
`  z ) #  ( Re `  w )  ->  (DECID  ( Im `  z
) #  ( Im `  w )  -> DECID  ( ( Re `  z ) #  ( Re `  w )  \/  (
Im `  z ) #  ( Im `  w ) ) ) )
2716, 25, 26sylc 62 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  -> DECID  ( ( Re `  z ) #  ( Re `  w )  \/  (
Im `  z ) #  ( Im `  w ) ) )
28 cnreim 11160 . . . . . 6  |-  ( ( z  e.  CC  /\  w  e.  CC )  ->  ( z #  w  <->  ( (
Re `  z ) #  ( Re `  w )  \/  ( Im `  z ) #  ( Im `  w ) ) ) )
2928dcbid 839 . . . . 5  |-  ( ( z  e.  CC  /\  w  e.  CC )  ->  (DECID  z #  w  <-> DECID  ( ( Re `  z ) #  ( Re `  w )  \/  (
Im `  z ) #  ( Im `  w ) ) ) )
3029adantl 277 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  ->  (DECID  z #  w  <-> DECID  ( ( Re `  z ) #  ( Re `  w
)  \/  ( Im
`  z ) #  ( Im `  w ) ) ) )
3127, 30mpbird 167 . . 3  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  ( z  e.  CC  /\  w  e.  CC ) )  -> DECID  z #  w )
3231ralrimivva 2579 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. z  e.  CC  A. w  e.  CC DECID  z #  w )
33 breq2 4038 . . . . . 6  |-  ( w  =  y  ->  (
x #  w  <->  x #  y
) )
3433dcbid 839 . . . . 5  |-  ( w  =  y  ->  (DECID  x #  w 
<-> DECID  x #  y ) )
35 breq1 4037 . . . . . . . 8  |-  ( z  =  x  ->  (
z #  w  <->  x #  w
) )
3635dcbid 839 . . . . . . 7  |-  ( z  =  x  ->  (DECID  z #  w 
<-> DECID  x #  w ) )
3736ralbidv 2497 . . . . . 6  |-  ( z  =  x  ->  ( A. w  e.  CC DECID  z #  w 
<-> 
A. w  e.  CC DECID  x #  w ) )
38 simpl 109 . . . . . 6  |-  ( ( A. z  e.  CC  A. w  e.  CC DECID  z #  w  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A. z  e.  CC  A. w  e.  CC DECID  z #  w )
39 simprl 529 . . . . . . 7  |-  ( ( A. z  e.  CC  A. w  e.  CC DECID  z #  w  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
4039recnd 8072 . . . . . 6  |-  ( ( A. z  e.  CC  A. w  e.  CC DECID  z #  w  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  CC )
4137, 38, 40rspcdva 2873 . . . . 5  |-  ( ( A. z  e.  CC  A. w  e.  CC DECID  z #  w  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A. w  e.  CC DECID  x #  w )
42 simprr 531 . . . . . 6  |-  ( ( A. z  e.  CC  A. w  e.  CC DECID  z #  w  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  RR )
4342recnd 8072 . . . . 5  |-  ( ( A. z  e.  CC  A. w  e.  CC DECID  z #  w  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  CC )
4434, 41, 43rspcdva 2873 . . . 4  |-  ( ( A. z  e.  CC  A. w  e.  CC DECID  z #  w  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> DECID  x #  y )
456adantl 277 . . . 4  |-  ( ( A. z  e.  CC  A. w  e.  CC DECID  z #  w  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
x  <  y  \/  x  =  y  \/  y  <  x )  <-> DECID  x #  y )
)
4644, 45mpbird 167 . . 3  |-  ( ( A. z  e.  CC  A. w  e.  CC DECID  z #  w  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  <  y  \/  x  =  y  \/  y  < 
x ) )
4746ralrimivva 2579 . 2  |-  ( A. z  e.  CC  A. w  e.  CC DECID  z #  w  ->  A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x ) )
4832, 47impbii 126 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. z  e.  CC  A. w  e.  CC DECID  z #  w )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    \/ w3o 979    = wceq 1364    e. wcel 2167   A.wral 2475   class class class wbr 4034   ` cfv 5259   CCcc 7894   RRcr 7895    < clt 8078   # cap 8625   Recre 11022   Imcim 11023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-2 9066  df-cj 11024  df-re 11025  df-im 11026
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator