ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div2negap Unicode version

Theorem div2negap 8631
Description: Quotient of two negatives. (Contributed by Jim Kingdon, 27-Feb-2020.)
Assertion
Ref Expression
div2negap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( -u A  /  -u B
)  =  ( A  /  B ) )

Proof of Theorem div2negap
StepHypRef Expression
1 negcl 8098 . . . . 5  |-  ( B  e.  CC  ->  -u B  e.  CC )
213ad2ant2 1009 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u B  e.  CC )
3 simp1 987 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  A  e.  CC )
4 simp2 988 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B  e.  CC )
5 simp3 989 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B #  0 )
6 div12ap 8590 . . . 4  |-  ( (
-u B  e.  CC  /\  A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( -u B  x.  ( A  /  B
) )  =  ( A  x.  ( -u B  /  B ) ) )
72, 3, 4, 5, 6syl112anc 1232 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( -u B  x.  ( A  /  B ) )  =  ( A  x.  ( -u B  /  B
) ) )
8 divnegap 8602 . . . . . . 7  |-  ( ( B  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u ( B  /  B )  =  ( -u B  /  B ) )
94, 8syld3an1 1274 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u ( B  /  B )  =  ( -u B  /  B ) )
10 dividap 8597 . . . . . . . 8  |-  ( ( B  e.  CC  /\  B #  0 )  ->  ( B  /  B )  =  1 )
11103adant1 1005 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  /  B )  =  1 )
1211negeqd 8093 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u ( B  /  B )  = 
-u 1 )
139, 12eqtr3d 2200 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( -u B  /  B )  =  -u 1 )
1413oveq2d 5858 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  x.  ( -u B  /  B ) )  =  ( A  x.  -u 1
) )
15 ax-1cn 7846 . . . . . . . 8  |-  1  e.  CC
1615negcli 8166 . . . . . . 7  |-  -u 1  e.  CC
17 mulcom 7882 . . . . . . 7  |-  ( ( A  e.  CC  /\  -u 1  e.  CC )  ->  ( A  x.  -u 1 )  =  (
-u 1  x.  A
) )
1816, 17mpan2 422 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  -u 1 )  =  ( -u 1  x.  A ) )
19 mulm1 8298 . . . . . 6  |-  ( A  e.  CC  ->  ( -u 1  x.  A )  =  -u A )
2018, 19eqtrd 2198 . . . . 5  |-  ( A  e.  CC  ->  ( A  x.  -u 1 )  =  -u A )
21203ad2ant1 1008 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  x.  -u 1 )  =  -u A )
2214, 21eqtrd 2198 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  x.  ( -u B  /  B ) )  = 
-u A )
237, 22eqtrd 2198 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( -u B  x.  ( A  /  B ) )  =  -u A )
24 negcl 8098 . . . 4  |-  ( A  e.  CC  ->  -u A  e.  CC )
25243ad2ant1 1008 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u A  e.  CC )
26 divclap 8574 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  e.  CC )
27 negap0 8528 . . . . 5  |-  ( B  e.  CC  ->  ( B #  0  <->  -u B #  0 ) )
2827biimpa 294 . . . 4  |-  ( ( B  e.  CC  /\  B #  0 )  ->  -u B #  0 )
29283adant1 1005 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u B #  0 )
30 divmulap 8571 . . 3  |-  ( (
-u A  e.  CC  /\  ( A  /  B
)  e.  CC  /\  ( -u B  e.  CC  /\  -u B #  0 )
)  ->  ( ( -u A  /  -u B
)  =  ( A  /  B )  <->  ( -u B  x.  ( A  /  B
) )  =  -u A ) )
3125, 26, 2, 29, 30syl112anc 1232 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( -u A  /  -u B
)  =  ( A  /  B )  <->  ( -u B  x.  ( A  /  B
) )  =  -u A ) )
3223, 31mpbird 166 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( -u A  /  -u B
)  =  ( A  /  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    x. cmul 7758   -ucneg 8070   # cap 8479    / cdiv 8568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569
This theorem is referenced by:  divneg2ap  8632  div2negapd  8701  div2subap  8733
  Copyright terms: Public domain W3C validator