ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div2negap Unicode version

Theorem div2negap 8495
Description: Quotient of two negatives. (Contributed by Jim Kingdon, 27-Feb-2020.)
Assertion
Ref Expression
div2negap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( -u A  /  -u B
)  =  ( A  /  B ) )

Proof of Theorem div2negap
StepHypRef Expression
1 negcl 7962 . . . . 5  |-  ( B  e.  CC  ->  -u B  e.  CC )
213ad2ant2 1003 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u B  e.  CC )
3 simp1 981 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  A  e.  CC )
4 simp2 982 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B  e.  CC )
5 simp3 983 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B #  0 )
6 div12ap 8454 . . . 4  |-  ( (
-u B  e.  CC  /\  A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( -u B  x.  ( A  /  B
) )  =  ( A  x.  ( -u B  /  B ) ) )
72, 3, 4, 5, 6syl112anc 1220 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( -u B  x.  ( A  /  B ) )  =  ( A  x.  ( -u B  /  B
) ) )
8 divnegap 8466 . . . . . . 7  |-  ( ( B  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u ( B  /  B )  =  ( -u B  /  B ) )
94, 8syld3an1 1262 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u ( B  /  B )  =  ( -u B  /  B ) )
10 dividap 8461 . . . . . . . 8  |-  ( ( B  e.  CC  /\  B #  0 )  ->  ( B  /  B )  =  1 )
11103adant1 999 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  /  B )  =  1 )
1211negeqd 7957 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u ( B  /  B )  = 
-u 1 )
139, 12eqtr3d 2174 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( -u B  /  B )  =  -u 1 )
1413oveq2d 5790 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  x.  ( -u B  /  B ) )  =  ( A  x.  -u 1
) )
15 ax-1cn 7713 . . . . . . . 8  |-  1  e.  CC
1615negcli 8030 . . . . . . 7  |-  -u 1  e.  CC
17 mulcom 7749 . . . . . . 7  |-  ( ( A  e.  CC  /\  -u 1  e.  CC )  ->  ( A  x.  -u 1 )  =  (
-u 1  x.  A
) )
1816, 17mpan2 421 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  -u 1 )  =  ( -u 1  x.  A ) )
19 mulm1 8162 . . . . . 6  |-  ( A  e.  CC  ->  ( -u 1  x.  A )  =  -u A )
2018, 19eqtrd 2172 . . . . 5  |-  ( A  e.  CC  ->  ( A  x.  -u 1 )  =  -u A )
21203ad2ant1 1002 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  x.  -u 1 )  =  -u A )
2214, 21eqtrd 2172 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  x.  ( -u B  /  B ) )  = 
-u A )
237, 22eqtrd 2172 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( -u B  x.  ( A  /  B ) )  =  -u A )
24 negcl 7962 . . . 4  |-  ( A  e.  CC  ->  -u A  e.  CC )
25243ad2ant1 1002 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u A  e.  CC )
26 divclap 8438 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  e.  CC )
27 negap0 8392 . . . . 5  |-  ( B  e.  CC  ->  ( B #  0  <->  -u B #  0 ) )
2827biimpa 294 . . . 4  |-  ( ( B  e.  CC  /\  B #  0 )  ->  -u B #  0 )
29283adant1 999 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u B #  0 )
30 divmulap 8435 . . 3  |-  ( (
-u A  e.  CC  /\  ( A  /  B
)  e.  CC  /\  ( -u B  e.  CC  /\  -u B #  0 )
)  ->  ( ( -u A  /  -u B
)  =  ( A  /  B )  <->  ( -u B  x.  ( A  /  B
) )  =  -u A ) )
3125, 26, 2, 29, 30syl112anc 1220 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( -u A  /  -u B
)  =  ( A  /  B )  <->  ( -u B  x.  ( A  /  B
) )  =  -u A ) )
3223, 31mpbird 166 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( -u A  /  -u B
)  =  ( A  /  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    x. cmul 7625   -ucneg 7934   # cap 8343    / cdiv 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433
This theorem is referenced by:  divneg2ap  8496  div2negapd  8565  div2subap  8596
  Copyright terms: Public domain W3C validator