ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qussub Unicode version

Theorem qussub 13307
Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h  |-  H  =  ( G  /.s  ( G ~QG  S
) )
qusinv.v  |-  V  =  ( Base `  G
)
qussub.p  |-  .-  =  ( -g `  G )
qussub.a  |-  N  =  ( -g `  H
)
Assertion
Ref Expression
qussub  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) N [ Y ]
( G ~QG  S ) )  =  [ ( X  .-  Y ) ] ( G ~QG  S ) )

Proof of Theorem qussub
StepHypRef Expression
1 qusgrp.h . . . . 5  |-  H  =  ( G  /.s  ( G ~QG  S
) )
2 qusinv.v . . . . 5  |-  V  =  ( Base `  G
)
3 eqid 2193 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
41, 2, 3quseccl 13303 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  [ X ] ( G ~QG  S )  e.  ( Base `  H
) )
543adant3 1019 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  [ X ] ( G ~QG  S )  e.  ( Base `  H
) )
61, 2, 3quseccl 13303 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  Y  e.  V )  ->  [ Y ] ( G ~QG  S )  e.  ( Base `  H
) )
7 eqid 2193 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
8 eqid 2193 . . . 4  |-  ( invg `  H )  =  ( invg `  H )
9 qussub.a . . . 4  |-  N  =  ( -g `  H
)
103, 7, 8, 9grpsubval 13118 . . 3  |-  ( ( [ X ] ( G ~QG  S )  e.  (
Base `  H )  /\  [ Y ] ( G ~QG  S )  e.  (
Base `  H )
)  ->  ( [ X ] ( G ~QG  S ) N [ Y ]
( G ~QG  S ) )  =  ( [ X ]
( G ~QG  S ) ( +g  `  H ) ( ( invg `  H
) `  [ Y ] ( G ~QG  S ) ) ) )
115, 6, 103imp3i2an 1185 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) N [ Y ]
( G ~QG  S ) )  =  ( [ X ]
( G ~QG  S ) ( +g  `  H ) ( ( invg `  H
) `  [ Y ] ( G ~QG  S ) ) ) )
12 eqid 2193 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
131, 2, 12, 8qusinv 13306 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  Y  e.  V )  ->  (
( invg `  H ) `  [ Y ] ( G ~QG  S ) )  =  [ ( ( invg `  G ) `  Y
) ] ( G ~QG  S ) )
14133adant2 1018 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( ( invg `  H ) `
 [ Y ]
( G ~QG  S ) )  =  [ ( ( invg `  G ) `
 Y ) ] ( G ~QG  S ) )
1514oveq2d 5934 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) ( ( invg `  H ) `
 [ Y ]
( G ~QG  S ) ) )  =  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( ( invg `  G
) `  Y ) ] ( G ~QG  S ) ) )
16 nsgsubg 13275 . . . . . . 7  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
17 subgrcl 13249 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1816, 17syl 14 . . . . . 6  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
192, 12grpinvcl 13120 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  V )  ->  ( ( invg `  G ) `  Y
)  e.  V )
2018, 19sylan 283 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  Y  e.  V )  ->  (
( invg `  G ) `  Y
)  e.  V )
21203adant2 1018 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( ( invg `  G ) `
 Y )  e.  V )
22 eqid 2193 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
231, 2, 22, 7qusadd 13304 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  ( ( invg `  G ) `
 Y )  e.  V )  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( ( invg `  G
) `  Y ) ] ( G ~QG  S ) )  =  [ ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) ] ( G ~QG  S ) )
2421, 23syld3an3 1294 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( ( invg `  G
) `  Y ) ] ( G ~QG  S ) )  =  [ ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) ] ( G ~QG  S ) )
25 qussub.p . . . . . 6  |-  .-  =  ( -g `  G )
262, 22, 12, 25grpsubval 13118 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) )
27263adant1 1017 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( X  .-  Y )  =  ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) )
2827eceq1d 6623 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  [ ( X  .-  Y ) ] ( G ~QG  S )  =  [
( X ( +g  `  G ) ( ( invg `  G
) `  Y )
) ] ( G ~QG  S ) )
2924, 28eqtr4d 2229 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( ( invg `  G
) `  Y ) ] ( G ~QG  S ) )  =  [ ( X  .-  Y ) ] ( G ~QG  S ) )
3011, 15, 293eqtrd 2230 1  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) N [ Y ]
( G ~QG  S ) )  =  [ ( X  .-  Y ) ] ( G ~QG  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   [cec 6585   Basecbs 12618   +g cplusg 12695    /.s cqus 12883   Grpcgrp 13072   invgcminusg 13073   -gcsg 13074  SubGrpcsubg 13237  NrmSGrpcnsg 13238   ~QG cqg 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-er 6587  df-ec 6589  df-qs 6593  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-subg 13240  df-nsg 13241  df-eqg 13242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator