ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qussub Unicode version

Theorem qussub 13774
Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h  |-  H  =  ( G  /.s  ( G ~QG  S
) )
qusinv.v  |-  V  =  ( Base `  G
)
qussub.p  |-  .-  =  ( -g `  G )
qussub.a  |-  N  =  ( -g `  H
)
Assertion
Ref Expression
qussub  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) N [ Y ]
( G ~QG  S ) )  =  [ ( X  .-  Y ) ] ( G ~QG  S ) )

Proof of Theorem qussub
StepHypRef Expression
1 qusgrp.h . . . . 5  |-  H  =  ( G  /.s  ( G ~QG  S
) )
2 qusinv.v . . . . 5  |-  V  =  ( Base `  G
)
3 eqid 2229 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
41, 2, 3quseccl 13770 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  [ X ] ( G ~QG  S )  e.  ( Base `  H
) )
543adant3 1041 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  [ X ] ( G ~QG  S )  e.  ( Base `  H
) )
61, 2, 3quseccl 13770 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  Y  e.  V )  ->  [ Y ] ( G ~QG  S )  e.  ( Base `  H
) )
7 eqid 2229 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
8 eqid 2229 . . . 4  |-  ( invg `  H )  =  ( invg `  H )
9 qussub.a . . . 4  |-  N  =  ( -g `  H
)
103, 7, 8, 9grpsubval 13579 . . 3  |-  ( ( [ X ] ( G ~QG  S )  e.  (
Base `  H )  /\  [ Y ] ( G ~QG  S )  e.  (
Base `  H )
)  ->  ( [ X ] ( G ~QG  S ) N [ Y ]
( G ~QG  S ) )  =  ( [ X ]
( G ~QG  S ) ( +g  `  H ) ( ( invg `  H
) `  [ Y ] ( G ~QG  S ) ) ) )
115, 6, 103imp3i2an 1207 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) N [ Y ]
( G ~QG  S ) )  =  ( [ X ]
( G ~QG  S ) ( +g  `  H ) ( ( invg `  H
) `  [ Y ] ( G ~QG  S ) ) ) )
12 eqid 2229 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
131, 2, 12, 8qusinv 13773 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  Y  e.  V )  ->  (
( invg `  H ) `  [ Y ] ( G ~QG  S ) )  =  [ ( ( invg `  G ) `  Y
) ] ( G ~QG  S ) )
14133adant2 1040 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( ( invg `  H ) `
 [ Y ]
( G ~QG  S ) )  =  [ ( ( invg `  G ) `
 Y ) ] ( G ~QG  S ) )
1514oveq2d 6017 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) ( ( invg `  H ) `
 [ Y ]
( G ~QG  S ) ) )  =  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( ( invg `  G
) `  Y ) ] ( G ~QG  S ) ) )
16 nsgsubg 13742 . . . . . . 7  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
17 subgrcl 13716 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1816, 17syl 14 . . . . . 6  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
192, 12grpinvcl 13581 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  V )  ->  ( ( invg `  G ) `  Y
)  e.  V )
2018, 19sylan 283 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  Y  e.  V )  ->  (
( invg `  G ) `  Y
)  e.  V )
21203adant2 1040 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( ( invg `  G ) `
 Y )  e.  V )
22 eqid 2229 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
231, 2, 22, 7qusadd 13771 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  ( ( invg `  G ) `
 Y )  e.  V )  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( ( invg `  G
) `  Y ) ] ( G ~QG  S ) )  =  [ ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) ] ( G ~QG  S ) )
2421, 23syld3an3 1316 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( ( invg `  G
) `  Y ) ] ( G ~QG  S ) )  =  [ ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) ] ( G ~QG  S ) )
25 qussub.p . . . . . 6  |-  .-  =  ( -g `  G )
262, 22, 12, 25grpsubval 13579 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) )
27263adant1 1039 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( X  .-  Y )  =  ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) )
2827eceq1d 6716 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  [ ( X  .-  Y ) ] ( G ~QG  S )  =  [
( X ( +g  `  G ) ( ( invg `  G
) `  Y )
) ] ( G ~QG  S ) )
2924, 28eqtr4d 2265 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( ( invg `  G
) `  Y ) ] ( G ~QG  S ) )  =  [ ( X  .-  Y ) ] ( G ~QG  S ) )
3011, 15, 293eqtrd 2266 1  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) N [ Y ]
( G ~QG  S ) )  =  [ ( X  .-  Y ) ] ( G ~QG  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   [cec 6678   Basecbs 13032   +g cplusg 13110    /.s cqus 13333   Grpcgrp 13533   invgcminusg 13534   -gcsg 13535  SubGrpcsubg 13704  NrmSGrpcnsg 13705   ~QG cqg 13706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-er 6680  df-ec 6682  df-qs 6686  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-iimas 13335  df-qus 13336  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-sbg 13538  df-subg 13707  df-nsg 13708  df-eqg 13709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator