ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qussub Unicode version

Theorem qussub 13573
Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h  |-  H  =  ( G  /.s  ( G ~QG  S
) )
qusinv.v  |-  V  =  ( Base `  G
)
qussub.p  |-  .-  =  ( -g `  G )
qussub.a  |-  N  =  ( -g `  H
)
Assertion
Ref Expression
qussub  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) N [ Y ]
( G ~QG  S ) )  =  [ ( X  .-  Y ) ] ( G ~QG  S ) )

Proof of Theorem qussub
StepHypRef Expression
1 qusgrp.h . . . . 5  |-  H  =  ( G  /.s  ( G ~QG  S
) )
2 qusinv.v . . . . 5  |-  V  =  ( Base `  G
)
3 eqid 2205 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
41, 2, 3quseccl 13569 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  [ X ] ( G ~QG  S )  e.  ( Base `  H
) )
543adant3 1020 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  [ X ] ( G ~QG  S )  e.  ( Base `  H
) )
61, 2, 3quseccl 13569 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  Y  e.  V )  ->  [ Y ] ( G ~QG  S )  e.  ( Base `  H
) )
7 eqid 2205 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
8 eqid 2205 . . . 4  |-  ( invg `  H )  =  ( invg `  H )
9 qussub.a . . . 4  |-  N  =  ( -g `  H
)
103, 7, 8, 9grpsubval 13378 . . 3  |-  ( ( [ X ] ( G ~QG  S )  e.  (
Base `  H )  /\  [ Y ] ( G ~QG  S )  e.  (
Base `  H )
)  ->  ( [ X ] ( G ~QG  S ) N [ Y ]
( G ~QG  S ) )  =  ( [ X ]
( G ~QG  S ) ( +g  `  H ) ( ( invg `  H
) `  [ Y ] ( G ~QG  S ) ) ) )
115, 6, 103imp3i2an 1186 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) N [ Y ]
( G ~QG  S ) )  =  ( [ X ]
( G ~QG  S ) ( +g  `  H ) ( ( invg `  H
) `  [ Y ] ( G ~QG  S ) ) ) )
12 eqid 2205 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
131, 2, 12, 8qusinv 13572 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  Y  e.  V )  ->  (
( invg `  H ) `  [ Y ] ( G ~QG  S ) )  =  [ ( ( invg `  G ) `  Y
) ] ( G ~QG  S ) )
14133adant2 1019 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( ( invg `  H ) `
 [ Y ]
( G ~QG  S ) )  =  [ ( ( invg `  G ) `
 Y ) ] ( G ~QG  S ) )
1514oveq2d 5960 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) ( ( invg `  H ) `
 [ Y ]
( G ~QG  S ) ) )  =  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( ( invg `  G
) `  Y ) ] ( G ~QG  S ) ) )
16 nsgsubg 13541 . . . . . . 7  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
17 subgrcl 13515 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1816, 17syl 14 . . . . . 6  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
192, 12grpinvcl 13380 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  V )  ->  ( ( invg `  G ) `  Y
)  e.  V )
2018, 19sylan 283 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  Y  e.  V )  ->  (
( invg `  G ) `  Y
)  e.  V )
21203adant2 1019 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( ( invg `  G ) `
 Y )  e.  V )
22 eqid 2205 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
231, 2, 22, 7qusadd 13570 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  ( ( invg `  G ) `
 Y )  e.  V )  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( ( invg `  G
) `  Y ) ] ( G ~QG  S ) )  =  [ ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) ] ( G ~QG  S ) )
2421, 23syld3an3 1295 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( ( invg `  G
) `  Y ) ] ( G ~QG  S ) )  =  [ ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) ] ( G ~QG  S ) )
25 qussub.p . . . . . 6  |-  .-  =  ( -g `  G )
262, 22, 12, 25grpsubval 13378 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) )
27263adant1 1018 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( X  .-  Y )  =  ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) ) )
2827eceq1d 6656 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  [ ( X  .-  Y ) ] ( G ~QG  S )  =  [
( X ( +g  `  G ) ( ( invg `  G
) `  Y )
) ] ( G ~QG  S ) )
2924, 28eqtr4d 2241 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( ( invg `  G
) `  Y ) ] ( G ~QG  S ) )  =  [ ( X  .-  Y ) ] ( G ~QG  S ) )
3011, 15, 293eqtrd 2242 1  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  Y  e.  V
)  ->  ( [ X ] ( G ~QG  S ) N [ Y ]
( G ~QG  S ) )  =  [ ( X  .-  Y ) ] ( G ~QG  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   [cec 6618   Basecbs 12832   +g cplusg 12909    /.s cqus 13132   Grpcgrp 13332   invgcminusg 13333   -gcsg 13334  SubGrpcsubg 13503  NrmSGrpcnsg 13504   ~QG cqg 13505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-er 6620  df-ec 6622  df-qs 6626  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-iimas 13134  df-qus 13135  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-subg 13506  df-nsg 13507  df-eqg 13508
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator