ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz2b1 Unicode version

Theorem eluz2b1 9796
Description: Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
Assertion
Ref Expression
eluz2b1  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  ZZ  /\  1  < 
N ) )

Proof of Theorem eluz2b1
StepHypRef Expression
1 2z 9474 . . 3  |-  2  e.  ZZ
21eluz1i 9729 . 2  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  ZZ  /\  2  <_  N ) )
3 1z 9472 . . . . 5  |-  1  e.  ZZ
4 zltp1le 9501 . . . . 5  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
53, 4mpan 424 . . . 4  |-  ( N  e.  ZZ  ->  (
1  <  N  <->  ( 1  +  1 )  <_  N ) )
6 df-2 9169 . . . . 5  |-  2  =  ( 1  +  1 )
76breq1i 4090 . . . 4  |-  ( 2  <_  N  <->  ( 1  +  1 )  <_  N )
85, 7bitr4di 198 . . 3  |-  ( N  e.  ZZ  ->  (
1  <  N  <->  2  <_  N ) )
98pm5.32i 454 . 2  |-  ( ( N  e.  ZZ  /\  1  <  N )  <->  ( N  e.  ZZ  /\  2  <_  N ) )
102, 9bitr4i 187 1  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  ZZ  /\  1  < 
N ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182   2c2 9161   ZZcz 9446   ZZ>=cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723
This theorem is referenced by:  eluz2gt1  9797  eluz2b2  9798  uz2m1nn  9800  uz2mulcl  9803  prmind2  12642  2prm  12649  3prm  12650  sqnprm  12658  isprm5lem  12663  difsqpwdvds  12861  exmidunben  12997  mersenne  15671
  Copyright terms: Public domain W3C validator