| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en2 | Unicode version | ||
| Description: A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| en2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6848 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | cnvimarndm 5055 |
. . . . 5
| |
| 4 | dff1o2 5539 |
. . . . . . . . 9
| |
| 5 | 4 | simp3bi 1017 |
. . . . . . . 8
|
| 6 | df2o3 6529 |
. . . . . . . 8
| |
| 7 | 5, 6 | eqtrdi 2255 |
. . . . . . 7
|
| 8 | 7 | imaeq2d 5031 |
. . . . . 6
|
| 9 | 8 | adantl 277 |
. . . . 5
|
| 10 | 3, 9 | eqtr3id 2253 |
. . . 4
|
| 11 | f1odm 5538 |
. . . . 5
| |
| 12 | 11 | adantl 277 |
. . . 4
|
| 13 | f1ocnv 5547 |
. . . . . . 7
| |
| 14 | 13 | adantl 277 |
. . . . . 6
|
| 15 | f1ofn 5535 |
. . . . . 6
| |
| 16 | 14, 15 | syl 14 |
. . . . 5
|
| 17 | 0lt2o 6540 |
. . . . . 6
| |
| 18 | 17 | a1i 9 |
. . . . 5
|
| 19 | 1lt2o 6541 |
. . . . . 6
| |
| 20 | 19 | a1i 9 |
. . . . 5
|
| 21 | fnimapr 5652 |
. . . . 5
| |
| 22 | 16, 18, 20, 21 | syl3anc 1250 |
. . . 4
|
| 23 | 10, 12, 22 | 3eqtr3d 2247 |
. . 3
|
| 24 | simpr 110 |
. . . . 5
| |
| 25 | f1ocnvdm 5863 |
. . . . 5
| |
| 26 | 24, 17, 25 | sylancl 413 |
. . . 4
|
| 27 | f1ocnvdm 5863 |
. . . . . 6
| |
| 28 | 24, 19, 27 | sylancl 413 |
. . . . 5
|
| 29 | preq2 3716 |
. . . . . . 7
| |
| 30 | 29 | eqeq2d 2218 |
. . . . . 6
|
| 31 | 30 | spcegv 2865 |
. . . . 5
|
| 32 | 28, 31 | syl 14 |
. . . 4
|
| 33 | preq1 3715 |
. . . . . . 7
| |
| 34 | 33 | eqeq2d 2218 |
. . . . . 6
|
| 35 | 34 | exbidv 1849 |
. . . . 5
|
| 36 | 35 | spcegv 2865 |
. . . 4
|
| 37 | 26, 32, 36 | sylsyld 58 |
. . 3
|
| 38 | 23, 37 | mpd 13 |
. 2
|
| 39 | 2, 38 | exlimddv 1923 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1o 6515 df-2o 6516 df-en 6841 |
| This theorem is referenced by: en2m 6927 upgrex 15774 |
| Copyright terms: Public domain | W3C validator |