ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2 Unicode version

Theorem en2 6911
Description: A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en2  |-  ( A 
~~  2o  ->  E. x E. y  A  =  { x ,  y } )
Distinct variable group:    x, A, y

Proof of Theorem en2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6834 . . 3  |-  ( A 
~~  2o  <->  E. f  f : A -1-1-onto-> 2o )
21biimpi 120 . 2  |-  ( A 
~~  2o  ->  E. f 
f : A -1-1-onto-> 2o )
3 cnvimarndm 5045 . . . . 5  |-  ( `' f " ran  f
)  =  dom  f
4 dff1o2 5526 . . . . . . . . 9  |-  ( f : A -1-1-onto-> 2o  <->  ( f  Fn  A  /\  Fun  `' f  /\  ran  f  =  2o ) )
54simp3bi 1016 . . . . . . . 8  |-  ( f : A -1-1-onto-> 2o  ->  ran  f  =  2o )
6 df2o3 6515 . . . . . . . 8  |-  2o  =  { (/) ,  1o }
75, 6eqtrdi 2253 . . . . . . 7  |-  ( f : A -1-1-onto-> 2o  ->  ran  f  =  { (/) ,  1o }
)
87imaeq2d 5021 . . . . . 6  |-  ( f : A -1-1-onto-> 2o  ->  ( `' f " ran  f )  =  ( `' f
" { (/) ,  1o } ) )
98adantl 277 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( `' f " ran  f )  =  ( `' f " { (/)
,  1o } ) )
103, 9eqtr3id 2251 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  dom  f  =  ( `' f " { (/) ,  1o } ) )
11 f1odm 5525 . . . . 5  |-  ( f : A -1-1-onto-> 2o  ->  dom  f  =  A )
1211adantl 277 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  dom  f  =  A )
13 f1ocnv 5534 . . . . . . 7  |-  ( f : A -1-1-onto-> 2o  ->  `' f : 2o -1-1-onto-> A )
1413adantl 277 . . . . . 6  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  `' f : 2o -1-1-onto-> A )
15 f1ofn 5522 . . . . . 6  |-  ( `' f : 2o -1-1-onto-> A  ->  `' f  Fn  2o )
1614, 15syl 14 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  `' f  Fn  2o )
17 0lt2o 6526 . . . . . 6  |-  (/)  e.  2o
1817a1i 9 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  (/)  e.  2o )
19 1lt2o 6527 . . . . . 6  |-  1o  e.  2o
2019a1i 9 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  1o  e.  2o )
21 fnimapr 5638 . . . . 5  |-  ( ( `' f  Fn  2o  /\  (/)  e.  2o  /\  1o  e.  2o )  ->  ( `' f " { (/)
,  1o } )  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) } )
2216, 18, 20, 21syl3anc 1249 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( `' f " { (/)
,  1o } )  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) } )
2310, 12, 223eqtr3d 2245 . . 3  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  A  =  { ( `' f `
 (/) ) ,  ( `' f `  1o ) } )
24 simpr 110 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  f : A -1-1-onto-> 2o )
25 f1ocnvdm 5849 . . . . 5  |-  ( ( f : A -1-1-onto-> 2o  /\  (/) 
e.  2o )  -> 
( `' f `  (/) )  e.  A )
2624, 17, 25sylancl 413 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( `' f `  (/) )  e.  A )
27 f1ocnvdm 5849 . . . . . 6  |-  ( ( f : A -1-1-onto-> 2o  /\  1o  e.  2o )  -> 
( `' f `  1o )  e.  A
)
2824, 19, 27sylancl 413 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( `' f `  1o )  e.  A )
29 preq2 3710 . . . . . . 7  |-  ( y  =  ( `' f `
 1o )  ->  { ( `' f `
 (/) ) ,  y }  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) } )
3029eqeq2d 2216 . . . . . 6  |-  ( y  =  ( `' f `
 1o )  -> 
( A  =  {
( `' f `  (/) ) ,  y }  <-> 
A  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) } ) )
3130spcegv 2860 . . . . 5  |-  ( ( `' f `  1o )  e.  A  ->  ( A  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) }  ->  E. y  A  =  { ( `' f `  (/) ) ,  y } ) )
3228, 31syl 14 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( A  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) }  ->  E. y  A  =  { ( `' f `  (/) ) ,  y } ) )
33 preq1 3709 . . . . . . 7  |-  ( x  =  ( `' f `
 (/) )  ->  { x ,  y }  =  { ( `' f `
 (/) ) ,  y } )
3433eqeq2d 2216 . . . . . 6  |-  ( x  =  ( `' f `
 (/) )  ->  ( A  =  { x ,  y }  <->  A  =  { ( `' f `
 (/) ) ,  y } ) )
3534exbidv 1847 . . . . 5  |-  ( x  =  ( `' f `
 (/) )  ->  ( E. y  A  =  { x ,  y }  <->  E. y  A  =  { ( `' f `
 (/) ) ,  y } ) )
3635spcegv 2860 . . . 4  |-  ( ( `' f `  (/) )  e.  A  ->  ( E. y  A  =  {
( `' f `  (/) ) ,  y }  ->  E. x E. y  A  =  { x ,  y } ) )
3726, 32, 36sylsyld 58 . . 3  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( A  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) }  ->  E. x E. y  A  =  { x ,  y } ) )
3823, 37mpd 13 . 2  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  E. x E. y  A  =  { x ,  y } )
392, 38exlimddv 1921 1  |-  ( A 
~~  2o  ->  E. x E. y  A  =  { x ,  y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372   E.wex 1514    e. wcel 2175   (/)c0 3459   {cpr 3633   class class class wbr 4043   `'ccnv 4673   dom cdm 4674   ran crn 4675   "cima 4677   Fun wfun 5264    Fn wfn 5265   -1-1-onto->wf1o 5269   ` cfv 5270   1oc1o 6494   2oc2o 6495    ~~ cen 6824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1o 6501  df-2o 6502  df-en 6827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator