| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en2 | Unicode version | ||
| Description: A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| en2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6893 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | cnvimarndm 5091 |
. . . . 5
| |
| 4 | dff1o2 5576 |
. . . . . . . . 9
| |
| 5 | 4 | simp3bi 1038 |
. . . . . . . 8
|
| 6 | df2o3 6574 |
. . . . . . . 8
| |
| 7 | 5, 6 | eqtrdi 2278 |
. . . . . . 7
|
| 8 | 7 | imaeq2d 5067 |
. . . . . 6
|
| 9 | 8 | adantl 277 |
. . . . 5
|
| 10 | 3, 9 | eqtr3id 2276 |
. . . 4
|
| 11 | f1odm 5575 |
. . . . 5
| |
| 12 | 11 | adantl 277 |
. . . 4
|
| 13 | f1ocnv 5584 |
. . . . . . 7
| |
| 14 | 13 | adantl 277 |
. . . . . 6
|
| 15 | f1ofn 5572 |
. . . . . 6
| |
| 16 | 14, 15 | syl 14 |
. . . . 5
|
| 17 | 0lt2o 6585 |
. . . . . 6
| |
| 18 | 17 | a1i 9 |
. . . . 5
|
| 19 | 1lt2o 6586 |
. . . . . 6
| |
| 20 | 19 | a1i 9 |
. . . . 5
|
| 21 | fnimapr 5693 |
. . . . 5
| |
| 22 | 16, 18, 20, 21 | syl3anc 1271 |
. . . 4
|
| 23 | 10, 12, 22 | 3eqtr3d 2270 |
. . 3
|
| 24 | simpr 110 |
. . . . 5
| |
| 25 | f1ocnvdm 5904 |
. . . . 5
| |
| 26 | 24, 17, 25 | sylancl 413 |
. . . 4
|
| 27 | f1ocnvdm 5904 |
. . . . . 6
| |
| 28 | 24, 19, 27 | sylancl 413 |
. . . . 5
|
| 29 | preq2 3744 |
. . . . . . 7
| |
| 30 | 29 | eqeq2d 2241 |
. . . . . 6
|
| 31 | 30 | spcegv 2891 |
. . . . 5
|
| 32 | 28, 31 | syl 14 |
. . . 4
|
| 33 | preq1 3743 |
. . . . . . 7
| |
| 34 | 33 | eqeq2d 2241 |
. . . . . 6
|
| 35 | 34 | exbidv 1871 |
. . . . 5
|
| 36 | 35 | spcegv 2891 |
. . . 4
|
| 37 | 26, 32, 36 | sylsyld 58 |
. . 3
|
| 38 | 23, 37 | mpd 13 |
. 2
|
| 39 | 2, 38 | exlimddv 1945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1o 6560 df-2o 6561 df-en 6886 |
| This theorem is referenced by: en2m 6972 en2prde 7362 upgrex 15897 |
| Copyright terms: Public domain | W3C validator |