ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2 Unicode version

Theorem en2 6971
Description: A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en2  |-  ( A 
~~  2o  ->  E. x E. y  A  =  { x ,  y } )
Distinct variable group:    x, A, y

Proof of Theorem en2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6893 . . 3  |-  ( A 
~~  2o  <->  E. f  f : A -1-1-onto-> 2o )
21biimpi 120 . 2  |-  ( A 
~~  2o  ->  E. f 
f : A -1-1-onto-> 2o )
3 cnvimarndm 5091 . . . . 5  |-  ( `' f " ran  f
)  =  dom  f
4 dff1o2 5576 . . . . . . . . 9  |-  ( f : A -1-1-onto-> 2o  <->  ( f  Fn  A  /\  Fun  `' f  /\  ran  f  =  2o ) )
54simp3bi 1038 . . . . . . . 8  |-  ( f : A -1-1-onto-> 2o  ->  ran  f  =  2o )
6 df2o3 6574 . . . . . . . 8  |-  2o  =  { (/) ,  1o }
75, 6eqtrdi 2278 . . . . . . 7  |-  ( f : A -1-1-onto-> 2o  ->  ran  f  =  { (/) ,  1o }
)
87imaeq2d 5067 . . . . . 6  |-  ( f : A -1-1-onto-> 2o  ->  ( `' f " ran  f )  =  ( `' f
" { (/) ,  1o } ) )
98adantl 277 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( `' f " ran  f )  =  ( `' f " { (/)
,  1o } ) )
103, 9eqtr3id 2276 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  dom  f  =  ( `' f " { (/) ,  1o } ) )
11 f1odm 5575 . . . . 5  |-  ( f : A -1-1-onto-> 2o  ->  dom  f  =  A )
1211adantl 277 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  dom  f  =  A )
13 f1ocnv 5584 . . . . . . 7  |-  ( f : A -1-1-onto-> 2o  ->  `' f : 2o -1-1-onto-> A )
1413adantl 277 . . . . . 6  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  `' f : 2o -1-1-onto-> A )
15 f1ofn 5572 . . . . . 6  |-  ( `' f : 2o -1-1-onto-> A  ->  `' f  Fn  2o )
1614, 15syl 14 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  `' f  Fn  2o )
17 0lt2o 6585 . . . . . 6  |-  (/)  e.  2o
1817a1i 9 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  (/)  e.  2o )
19 1lt2o 6586 . . . . . 6  |-  1o  e.  2o
2019a1i 9 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  1o  e.  2o )
21 fnimapr 5693 . . . . 5  |-  ( ( `' f  Fn  2o  /\  (/)  e.  2o  /\  1o  e.  2o )  ->  ( `' f " { (/)
,  1o } )  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) } )
2216, 18, 20, 21syl3anc 1271 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( `' f " { (/)
,  1o } )  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) } )
2310, 12, 223eqtr3d 2270 . . 3  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  A  =  { ( `' f `
 (/) ) ,  ( `' f `  1o ) } )
24 simpr 110 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  f : A -1-1-onto-> 2o )
25 f1ocnvdm 5904 . . . . 5  |-  ( ( f : A -1-1-onto-> 2o  /\  (/) 
e.  2o )  -> 
( `' f `  (/) )  e.  A )
2624, 17, 25sylancl 413 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( `' f `  (/) )  e.  A )
27 f1ocnvdm 5904 . . . . . 6  |-  ( ( f : A -1-1-onto-> 2o  /\  1o  e.  2o )  -> 
( `' f `  1o )  e.  A
)
2824, 19, 27sylancl 413 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( `' f `  1o )  e.  A )
29 preq2 3744 . . . . . . 7  |-  ( y  =  ( `' f `
 1o )  ->  { ( `' f `
 (/) ) ,  y }  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) } )
3029eqeq2d 2241 . . . . . 6  |-  ( y  =  ( `' f `
 1o )  -> 
( A  =  {
( `' f `  (/) ) ,  y }  <-> 
A  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) } ) )
3130spcegv 2891 . . . . 5  |-  ( ( `' f `  1o )  e.  A  ->  ( A  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) }  ->  E. y  A  =  { ( `' f `  (/) ) ,  y } ) )
3228, 31syl 14 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( A  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) }  ->  E. y  A  =  { ( `' f `  (/) ) ,  y } ) )
33 preq1 3743 . . . . . . 7  |-  ( x  =  ( `' f `
 (/) )  ->  { x ,  y }  =  { ( `' f `
 (/) ) ,  y } )
3433eqeq2d 2241 . . . . . 6  |-  ( x  =  ( `' f `
 (/) )  ->  ( A  =  { x ,  y }  <->  A  =  { ( `' f `
 (/) ) ,  y } ) )
3534exbidv 1871 . . . . 5  |-  ( x  =  ( `' f `
 (/) )  ->  ( E. y  A  =  { x ,  y }  <->  E. y  A  =  { ( `' f `
 (/) ) ,  y } ) )
3635spcegv 2891 . . . 4  |-  ( ( `' f `  (/) )  e.  A  ->  ( E. y  A  =  {
( `' f `  (/) ) ,  y }  ->  E. x E. y  A  =  { x ,  y } ) )
3726, 32, 36sylsyld 58 . . 3  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( A  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) }  ->  E. x E. y  A  =  { x ,  y } ) )
3823, 37mpd 13 . 2  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  E. x E. y  A  =  { x ,  y } )
392, 38exlimddv 1945 1  |-  ( A 
~~  2o  ->  E. x E. y  A  =  { x ,  y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   (/)c0 3491   {cpr 3667   class class class wbr 4082   `'ccnv 4717   dom cdm 4718   ran crn 4719   "cima 4721   Fun wfun 5311    Fn wfn 5312   -1-1-onto->wf1o 5316   ` cfv 5317   1oc1o 6553   2oc2o 6554    ~~ cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-2o 6561  df-en 6886
This theorem is referenced by:  en2m  6972  en2prde  7362  upgrex  15897
  Copyright terms: Public domain W3C validator