| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en2 | Unicode version | ||
| Description: A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| en2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6834 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | cnvimarndm 5045 |
. . . . 5
| |
| 4 | dff1o2 5526 |
. . . . . . . . 9
| |
| 5 | 4 | simp3bi 1016 |
. . . . . . . 8
|
| 6 | df2o3 6515 |
. . . . . . . 8
| |
| 7 | 5, 6 | eqtrdi 2253 |
. . . . . . 7
|
| 8 | 7 | imaeq2d 5021 |
. . . . . 6
|
| 9 | 8 | adantl 277 |
. . . . 5
|
| 10 | 3, 9 | eqtr3id 2251 |
. . . 4
|
| 11 | f1odm 5525 |
. . . . 5
| |
| 12 | 11 | adantl 277 |
. . . 4
|
| 13 | f1ocnv 5534 |
. . . . . . 7
| |
| 14 | 13 | adantl 277 |
. . . . . 6
|
| 15 | f1ofn 5522 |
. . . . . 6
| |
| 16 | 14, 15 | syl 14 |
. . . . 5
|
| 17 | 0lt2o 6526 |
. . . . . 6
| |
| 18 | 17 | a1i 9 |
. . . . 5
|
| 19 | 1lt2o 6527 |
. . . . . 6
| |
| 20 | 19 | a1i 9 |
. . . . 5
|
| 21 | fnimapr 5638 |
. . . . 5
| |
| 22 | 16, 18, 20, 21 | syl3anc 1249 |
. . . 4
|
| 23 | 10, 12, 22 | 3eqtr3d 2245 |
. . 3
|
| 24 | simpr 110 |
. . . . 5
| |
| 25 | f1ocnvdm 5849 |
. . . . 5
| |
| 26 | 24, 17, 25 | sylancl 413 |
. . . 4
|
| 27 | f1ocnvdm 5849 |
. . . . . 6
| |
| 28 | 24, 19, 27 | sylancl 413 |
. . . . 5
|
| 29 | preq2 3710 |
. . . . . . 7
| |
| 30 | 29 | eqeq2d 2216 |
. . . . . 6
|
| 31 | 30 | spcegv 2860 |
. . . . 5
|
| 32 | 28, 31 | syl 14 |
. . . 4
|
| 33 | preq1 3709 |
. . . . . . 7
| |
| 34 | 33 | eqeq2d 2216 |
. . . . . 6
|
| 35 | 34 | exbidv 1847 |
. . . . 5
|
| 36 | 35 | spcegv 2860 |
. . . 4
|
| 37 | 26, 32, 36 | sylsyld 58 |
. . 3
|
| 38 | 23, 37 | mpd 13 |
. 2
|
| 39 | 2, 38 | exlimddv 1921 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1o 6501 df-2o 6502 df-en 6827 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |