ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2 Unicode version

Theorem en2 6926
Description: A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en2  |-  ( A 
~~  2o  ->  E. x E. y  A  =  { x ,  y } )
Distinct variable group:    x, A, y

Proof of Theorem en2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6848 . . 3  |-  ( A 
~~  2o  <->  E. f  f : A -1-1-onto-> 2o )
21biimpi 120 . 2  |-  ( A 
~~  2o  ->  E. f 
f : A -1-1-onto-> 2o )
3 cnvimarndm 5055 . . . . 5  |-  ( `' f " ran  f
)  =  dom  f
4 dff1o2 5539 . . . . . . . . 9  |-  ( f : A -1-1-onto-> 2o  <->  ( f  Fn  A  /\  Fun  `' f  /\  ran  f  =  2o ) )
54simp3bi 1017 . . . . . . . 8  |-  ( f : A -1-1-onto-> 2o  ->  ran  f  =  2o )
6 df2o3 6529 . . . . . . . 8  |-  2o  =  { (/) ,  1o }
75, 6eqtrdi 2255 . . . . . . 7  |-  ( f : A -1-1-onto-> 2o  ->  ran  f  =  { (/) ,  1o }
)
87imaeq2d 5031 . . . . . 6  |-  ( f : A -1-1-onto-> 2o  ->  ( `' f " ran  f )  =  ( `' f
" { (/) ,  1o } ) )
98adantl 277 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( `' f " ran  f )  =  ( `' f " { (/)
,  1o } ) )
103, 9eqtr3id 2253 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  dom  f  =  ( `' f " { (/) ,  1o } ) )
11 f1odm 5538 . . . . 5  |-  ( f : A -1-1-onto-> 2o  ->  dom  f  =  A )
1211adantl 277 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  dom  f  =  A )
13 f1ocnv 5547 . . . . . . 7  |-  ( f : A -1-1-onto-> 2o  ->  `' f : 2o -1-1-onto-> A )
1413adantl 277 . . . . . 6  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  `' f : 2o -1-1-onto-> A )
15 f1ofn 5535 . . . . . 6  |-  ( `' f : 2o -1-1-onto-> A  ->  `' f  Fn  2o )
1614, 15syl 14 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  `' f  Fn  2o )
17 0lt2o 6540 . . . . . 6  |-  (/)  e.  2o
1817a1i 9 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  (/)  e.  2o )
19 1lt2o 6541 . . . . . 6  |-  1o  e.  2o
2019a1i 9 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  1o  e.  2o )
21 fnimapr 5652 . . . . 5  |-  ( ( `' f  Fn  2o  /\  (/)  e.  2o  /\  1o  e.  2o )  ->  ( `' f " { (/)
,  1o } )  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) } )
2216, 18, 20, 21syl3anc 1250 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( `' f " { (/)
,  1o } )  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) } )
2310, 12, 223eqtr3d 2247 . . 3  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  A  =  { ( `' f `
 (/) ) ,  ( `' f `  1o ) } )
24 simpr 110 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  f : A -1-1-onto-> 2o )
25 f1ocnvdm 5863 . . . . 5  |-  ( ( f : A -1-1-onto-> 2o  /\  (/) 
e.  2o )  -> 
( `' f `  (/) )  e.  A )
2624, 17, 25sylancl 413 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( `' f `  (/) )  e.  A )
27 f1ocnvdm 5863 . . . . . 6  |-  ( ( f : A -1-1-onto-> 2o  /\  1o  e.  2o )  -> 
( `' f `  1o )  e.  A
)
2824, 19, 27sylancl 413 . . . . 5  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( `' f `  1o )  e.  A )
29 preq2 3716 . . . . . . 7  |-  ( y  =  ( `' f `
 1o )  ->  { ( `' f `
 (/) ) ,  y }  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) } )
3029eqeq2d 2218 . . . . . 6  |-  ( y  =  ( `' f `
 1o )  -> 
( A  =  {
( `' f `  (/) ) ,  y }  <-> 
A  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) } ) )
3130spcegv 2865 . . . . 5  |-  ( ( `' f `  1o )  e.  A  ->  ( A  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) }  ->  E. y  A  =  { ( `' f `  (/) ) ,  y } ) )
3228, 31syl 14 . . . 4  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( A  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) }  ->  E. y  A  =  { ( `' f `  (/) ) ,  y } ) )
33 preq1 3715 . . . . . . 7  |-  ( x  =  ( `' f `
 (/) )  ->  { x ,  y }  =  { ( `' f `
 (/) ) ,  y } )
3433eqeq2d 2218 . . . . . 6  |-  ( x  =  ( `' f `
 (/) )  ->  ( A  =  { x ,  y }  <->  A  =  { ( `' f `
 (/) ) ,  y } ) )
3534exbidv 1849 . . . . 5  |-  ( x  =  ( `' f `
 (/) )  ->  ( E. y  A  =  { x ,  y }  <->  E. y  A  =  { ( `' f `
 (/) ) ,  y } ) )
3635spcegv 2865 . . . 4  |-  ( ( `' f `  (/) )  e.  A  ->  ( E. y  A  =  {
( `' f `  (/) ) ,  y }  ->  E. x E. y  A  =  { x ,  y } ) )
3726, 32, 36sylsyld 58 . . 3  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  ( A  =  { ( `' f `  (/) ) ,  ( `' f `  1o ) }  ->  E. x E. y  A  =  { x ,  y } ) )
3823, 37mpd 13 . 2  |-  ( ( A  ~~  2o  /\  f : A -1-1-onto-> 2o )  ->  E. x E. y  A  =  { x ,  y } )
392, 38exlimddv 1923 1  |-  ( A 
~~  2o  ->  E. x E. y  A  =  { x ,  y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2177   (/)c0 3464   {cpr 3639   class class class wbr 4051   `'ccnv 4682   dom cdm 4683   ran crn 4684   "cima 4686   Fun wfun 5274    Fn wfn 5275   -1-1-onto->wf1o 5279   ` cfv 5280   1oc1o 6508   2oc2o 6509    ~~ cen 6838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-1o 6515  df-2o 6516  df-en 6841
This theorem is referenced by:  en2m  6927  upgrex  15774
  Copyright terms: Public domain W3C validator