| Step | Hyp | Ref
| Expression |
| 1 | | bren 6834 |
. . 3
⊢ (𝐴 ≈ 2o ↔
∃𝑓 𝑓:𝐴–1-1-onto→2o) |
| 2 | 1 | biimpi 120 |
. 2
⊢ (𝐴 ≈ 2o →
∃𝑓 𝑓:𝐴–1-1-onto→2o) |
| 3 | | cnvimarndm 5045 |
. . . . 5
⊢ (◡𝑓 “ ran 𝑓) = dom 𝑓 |
| 4 | | dff1o2 5526 |
. . . . . . . . 9
⊢ (𝑓:𝐴–1-1-onto→2o ↔ (𝑓 Fn 𝐴 ∧ Fun ◡𝑓 ∧ ran 𝑓 = 2o)) |
| 5 | 4 | simp3bi 1016 |
. . . . . . . 8
⊢ (𝑓:𝐴–1-1-onto→2o → ran 𝑓 = 2o) |
| 6 | | df2o3 6515 |
. . . . . . . 8
⊢
2o = {∅, 1o} |
| 7 | 5, 6 | eqtrdi 2253 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→2o → ran 𝑓 = {∅, 1o}) |
| 8 | 7 | imaeq2d 5021 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→2o → (◡𝑓 “ ran 𝑓) = (◡𝑓 “ {∅,
1o})) |
| 9 | 8 | adantl 277 |
. . . . 5
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → (◡𝑓 “ ran 𝑓) = (◡𝑓 “ {∅,
1o})) |
| 10 | 3, 9 | eqtr3id 2251 |
. . . 4
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → dom 𝑓 = (◡𝑓 “ {∅,
1o})) |
| 11 | | f1odm 5525 |
. . . . 5
⊢ (𝑓:𝐴–1-1-onto→2o → dom 𝑓 = 𝐴) |
| 12 | 11 | adantl 277 |
. . . 4
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → dom 𝑓 = 𝐴) |
| 13 | | f1ocnv 5534 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1-onto→2o → ◡𝑓:2o–1-1-onto→𝐴) |
| 14 | 13 | adantl 277 |
. . . . . 6
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → ◡𝑓:2o–1-1-onto→𝐴) |
| 15 | | f1ofn 5522 |
. . . . . 6
⊢ (◡𝑓:2o–1-1-onto→𝐴 → ◡𝑓 Fn 2o) |
| 16 | 14, 15 | syl 14 |
. . . . 5
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → ◡𝑓 Fn 2o) |
| 17 | | 0lt2o 6526 |
. . . . . 6
⊢ ∅
∈ 2o |
| 18 | 17 | a1i 9 |
. . . . 5
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → ∅ ∈
2o) |
| 19 | | 1lt2o 6527 |
. . . . . 6
⊢
1o ∈ 2o |
| 20 | 19 | a1i 9 |
. . . . 5
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → 1o ∈
2o) |
| 21 | | fnimapr 5638 |
. . . . 5
⊢ ((◡𝑓 Fn 2o ∧ ∅ ∈
2o ∧ 1o ∈ 2o) → (◡𝑓 “ {∅, 1o}) = {(◡𝑓‘∅), (◡𝑓‘1o)}) |
| 22 | 16, 18, 20, 21 | syl3anc 1249 |
. . . 4
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → (◡𝑓 “ {∅, 1o}) = {(◡𝑓‘∅), (◡𝑓‘1o)}) |
| 23 | 10, 12, 22 | 3eqtr3d 2245 |
. . 3
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → 𝐴 = {(◡𝑓‘∅), (◡𝑓‘1o)}) |
| 24 | | simpr 110 |
. . . . 5
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → 𝑓:𝐴–1-1-onto→2o) |
| 25 | | f1ocnvdm 5849 |
. . . . 5
⊢ ((𝑓:𝐴–1-1-onto→2o ∧ ∅ ∈
2o) → (◡𝑓‘∅) ∈ 𝐴) |
| 26 | 24, 17, 25 | sylancl 413 |
. . . 4
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → (◡𝑓‘∅) ∈ 𝐴) |
| 27 | | f1ocnvdm 5849 |
. . . . . 6
⊢ ((𝑓:𝐴–1-1-onto→2o ∧ 1o ∈
2o) → (◡𝑓‘1o) ∈
𝐴) |
| 28 | 24, 19, 27 | sylancl 413 |
. . . . 5
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → (◡𝑓‘1o) ∈ 𝐴) |
| 29 | | preq2 3710 |
. . . . . . 7
⊢ (𝑦 = (◡𝑓‘1o) → {(◡𝑓‘∅), 𝑦} = {(◡𝑓‘∅), (◡𝑓‘1o)}) |
| 30 | 29 | eqeq2d 2216 |
. . . . . 6
⊢ (𝑦 = (◡𝑓‘1o) → (𝐴 = {(◡𝑓‘∅), 𝑦} ↔ 𝐴 = {(◡𝑓‘∅), (◡𝑓‘1o)})) |
| 31 | 30 | spcegv 2860 |
. . . . 5
⊢ ((◡𝑓‘1o) ∈ 𝐴 → (𝐴 = {(◡𝑓‘∅), (◡𝑓‘1o)} → ∃𝑦 𝐴 = {(◡𝑓‘∅), 𝑦})) |
| 32 | 28, 31 | syl 14 |
. . . 4
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → (𝐴 = {(◡𝑓‘∅), (◡𝑓‘1o)} → ∃𝑦 𝐴 = {(◡𝑓‘∅), 𝑦})) |
| 33 | | preq1 3709 |
. . . . . . 7
⊢ (𝑥 = (◡𝑓‘∅) → {𝑥, 𝑦} = {(◡𝑓‘∅), 𝑦}) |
| 34 | 33 | eqeq2d 2216 |
. . . . . 6
⊢ (𝑥 = (◡𝑓‘∅) → (𝐴 = {𝑥, 𝑦} ↔ 𝐴 = {(◡𝑓‘∅), 𝑦})) |
| 35 | 34 | exbidv 1847 |
. . . . 5
⊢ (𝑥 = (◡𝑓‘∅) → (∃𝑦 𝐴 = {𝑥, 𝑦} ↔ ∃𝑦 𝐴 = {(◡𝑓‘∅), 𝑦})) |
| 36 | 35 | spcegv 2860 |
. . . 4
⊢ ((◡𝑓‘∅) ∈ 𝐴 → (∃𝑦 𝐴 = {(◡𝑓‘∅), 𝑦} → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦})) |
| 37 | 26, 32, 36 | sylsyld 58 |
. . 3
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → (𝐴 = {(◡𝑓‘∅), (◡𝑓‘1o)} → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦})) |
| 38 | 23, 37 | mpd 13 |
. 2
⊢ ((𝐴 ≈ 2o ∧
𝑓:𝐴–1-1-onto→2o) → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) |
| 39 | 2, 38 | exlimddv 1921 |
1
⊢ (𝐴 ≈ 2o →
∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) |