ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2 GIF version

Theorem en2 6971
Description: A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en2 (𝐴 ≈ 2o → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem en2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 6893 . . 3 (𝐴 ≈ 2o ↔ ∃𝑓 𝑓:𝐴1-1-onto→2o)
21biimpi 120 . 2 (𝐴 ≈ 2o → ∃𝑓 𝑓:𝐴1-1-onto→2o)
3 cnvimarndm 5091 . . . . 5 (𝑓 “ ran 𝑓) = dom 𝑓
4 dff1o2 5576 . . . . . . . . 9 (𝑓:𝐴1-1-onto→2o ↔ (𝑓 Fn 𝐴 ∧ Fun 𝑓 ∧ ran 𝑓 = 2o))
54simp3bi 1038 . . . . . . . 8 (𝑓:𝐴1-1-onto→2o → ran 𝑓 = 2o)
6 df2o3 6574 . . . . . . . 8 2o = {∅, 1o}
75, 6eqtrdi 2278 . . . . . . 7 (𝑓:𝐴1-1-onto→2o → ran 𝑓 = {∅, 1o})
87imaeq2d 5067 . . . . . 6 (𝑓:𝐴1-1-onto→2o → (𝑓 “ ran 𝑓) = (𝑓 “ {∅, 1o}))
98adantl 277 . . . . 5 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → (𝑓 “ ran 𝑓) = (𝑓 “ {∅, 1o}))
103, 9eqtr3id 2276 . . . 4 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → dom 𝑓 = (𝑓 “ {∅, 1o}))
11 f1odm 5575 . . . . 5 (𝑓:𝐴1-1-onto→2o → dom 𝑓 = 𝐴)
1211adantl 277 . . . 4 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → dom 𝑓 = 𝐴)
13 f1ocnv 5584 . . . . . . 7 (𝑓:𝐴1-1-onto→2o𝑓:2o1-1-onto𝐴)
1413adantl 277 . . . . . 6 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → 𝑓:2o1-1-onto𝐴)
15 f1ofn 5572 . . . . . 6 (𝑓:2o1-1-onto𝐴𝑓 Fn 2o)
1614, 15syl 14 . . . . 5 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → 𝑓 Fn 2o)
17 0lt2o 6585 . . . . . 6 ∅ ∈ 2o
1817a1i 9 . . . . 5 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → ∅ ∈ 2o)
19 1lt2o 6586 . . . . . 6 1o ∈ 2o
2019a1i 9 . . . . 5 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → 1o ∈ 2o)
21 fnimapr 5693 . . . . 5 ((𝑓 Fn 2o ∧ ∅ ∈ 2o ∧ 1o ∈ 2o) → (𝑓 “ {∅, 1o}) = {(𝑓‘∅), (𝑓‘1o)})
2216, 18, 20, 21syl3anc 1271 . . . 4 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → (𝑓 “ {∅, 1o}) = {(𝑓‘∅), (𝑓‘1o)})
2310, 12, 223eqtr3d 2270 . . 3 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → 𝐴 = {(𝑓‘∅), (𝑓‘1o)})
24 simpr 110 . . . . 5 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → 𝑓:𝐴1-1-onto→2o)
25 f1ocnvdm 5904 . . . . 5 ((𝑓:𝐴1-1-onto→2o ∧ ∅ ∈ 2o) → (𝑓‘∅) ∈ 𝐴)
2624, 17, 25sylancl 413 . . . 4 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → (𝑓‘∅) ∈ 𝐴)
27 f1ocnvdm 5904 . . . . . 6 ((𝑓:𝐴1-1-onto→2o ∧ 1o ∈ 2o) → (𝑓‘1o) ∈ 𝐴)
2824, 19, 27sylancl 413 . . . . 5 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → (𝑓‘1o) ∈ 𝐴)
29 preq2 3744 . . . . . . 7 (𝑦 = (𝑓‘1o) → {(𝑓‘∅), 𝑦} = {(𝑓‘∅), (𝑓‘1o)})
3029eqeq2d 2241 . . . . . 6 (𝑦 = (𝑓‘1o) → (𝐴 = {(𝑓‘∅), 𝑦} ↔ 𝐴 = {(𝑓‘∅), (𝑓‘1o)}))
3130spcegv 2891 . . . . 5 ((𝑓‘1o) ∈ 𝐴 → (𝐴 = {(𝑓‘∅), (𝑓‘1o)} → ∃𝑦 𝐴 = {(𝑓‘∅), 𝑦}))
3228, 31syl 14 . . . 4 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → (𝐴 = {(𝑓‘∅), (𝑓‘1o)} → ∃𝑦 𝐴 = {(𝑓‘∅), 𝑦}))
33 preq1 3743 . . . . . . 7 (𝑥 = (𝑓‘∅) → {𝑥, 𝑦} = {(𝑓‘∅), 𝑦})
3433eqeq2d 2241 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥, 𝑦} ↔ 𝐴 = {(𝑓‘∅), 𝑦}))
3534exbidv 1871 . . . . 5 (𝑥 = (𝑓‘∅) → (∃𝑦 𝐴 = {𝑥, 𝑦} ↔ ∃𝑦 𝐴 = {(𝑓‘∅), 𝑦}))
3635spcegv 2891 . . . 4 ((𝑓‘∅) ∈ 𝐴 → (∃𝑦 𝐴 = {(𝑓‘∅), 𝑦} → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦}))
3726, 32, 36sylsyld 58 . . 3 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → (𝐴 = {(𝑓‘∅), (𝑓‘1o)} → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦}))
3823, 37mpd 13 . 2 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
392, 38exlimddv 1945 1 (𝐴 ≈ 2o → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  c0 3491  {cpr 3667   class class class wbr 4082  ccnv 4717  dom cdm 4718  ran crn 4719  cima 4721  Fun wfun 5311   Fn wfn 5312  1-1-ontowf1o 5316  cfv 5317  1oc1o 6553  2oc2o 6554  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-2o 6561  df-en 6886
This theorem is referenced by:  en2m  6972  en2prde  7362  upgrex  15897
  Copyright terms: Public domain W3C validator