ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2 GIF version

Theorem en2 6911
Description: A set equinumerous to ordinal 2 is an unordered pair. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en2 (𝐴 ≈ 2o → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem en2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 6834 . . 3 (𝐴 ≈ 2o ↔ ∃𝑓 𝑓:𝐴1-1-onto→2o)
21biimpi 120 . 2 (𝐴 ≈ 2o → ∃𝑓 𝑓:𝐴1-1-onto→2o)
3 cnvimarndm 5045 . . . . 5 (𝑓 “ ran 𝑓) = dom 𝑓
4 dff1o2 5526 . . . . . . . . 9 (𝑓:𝐴1-1-onto→2o ↔ (𝑓 Fn 𝐴 ∧ Fun 𝑓 ∧ ran 𝑓 = 2o))
54simp3bi 1016 . . . . . . . 8 (𝑓:𝐴1-1-onto→2o → ran 𝑓 = 2o)
6 df2o3 6515 . . . . . . . 8 2o = {∅, 1o}
75, 6eqtrdi 2253 . . . . . . 7 (𝑓:𝐴1-1-onto→2o → ran 𝑓 = {∅, 1o})
87imaeq2d 5021 . . . . . 6 (𝑓:𝐴1-1-onto→2o → (𝑓 “ ran 𝑓) = (𝑓 “ {∅, 1o}))
98adantl 277 . . . . 5 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → (𝑓 “ ran 𝑓) = (𝑓 “ {∅, 1o}))
103, 9eqtr3id 2251 . . . 4 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → dom 𝑓 = (𝑓 “ {∅, 1o}))
11 f1odm 5525 . . . . 5 (𝑓:𝐴1-1-onto→2o → dom 𝑓 = 𝐴)
1211adantl 277 . . . 4 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → dom 𝑓 = 𝐴)
13 f1ocnv 5534 . . . . . . 7 (𝑓:𝐴1-1-onto→2o𝑓:2o1-1-onto𝐴)
1413adantl 277 . . . . . 6 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → 𝑓:2o1-1-onto𝐴)
15 f1ofn 5522 . . . . . 6 (𝑓:2o1-1-onto𝐴𝑓 Fn 2o)
1614, 15syl 14 . . . . 5 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → 𝑓 Fn 2o)
17 0lt2o 6526 . . . . . 6 ∅ ∈ 2o
1817a1i 9 . . . . 5 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → ∅ ∈ 2o)
19 1lt2o 6527 . . . . . 6 1o ∈ 2o
2019a1i 9 . . . . 5 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → 1o ∈ 2o)
21 fnimapr 5638 . . . . 5 ((𝑓 Fn 2o ∧ ∅ ∈ 2o ∧ 1o ∈ 2o) → (𝑓 “ {∅, 1o}) = {(𝑓‘∅), (𝑓‘1o)})
2216, 18, 20, 21syl3anc 1249 . . . 4 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → (𝑓 “ {∅, 1o}) = {(𝑓‘∅), (𝑓‘1o)})
2310, 12, 223eqtr3d 2245 . . 3 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → 𝐴 = {(𝑓‘∅), (𝑓‘1o)})
24 simpr 110 . . . . 5 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → 𝑓:𝐴1-1-onto→2o)
25 f1ocnvdm 5849 . . . . 5 ((𝑓:𝐴1-1-onto→2o ∧ ∅ ∈ 2o) → (𝑓‘∅) ∈ 𝐴)
2624, 17, 25sylancl 413 . . . 4 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → (𝑓‘∅) ∈ 𝐴)
27 f1ocnvdm 5849 . . . . . 6 ((𝑓:𝐴1-1-onto→2o ∧ 1o ∈ 2o) → (𝑓‘1o) ∈ 𝐴)
2824, 19, 27sylancl 413 . . . . 5 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → (𝑓‘1o) ∈ 𝐴)
29 preq2 3710 . . . . . . 7 (𝑦 = (𝑓‘1o) → {(𝑓‘∅), 𝑦} = {(𝑓‘∅), (𝑓‘1o)})
3029eqeq2d 2216 . . . . . 6 (𝑦 = (𝑓‘1o) → (𝐴 = {(𝑓‘∅), 𝑦} ↔ 𝐴 = {(𝑓‘∅), (𝑓‘1o)}))
3130spcegv 2860 . . . . 5 ((𝑓‘1o) ∈ 𝐴 → (𝐴 = {(𝑓‘∅), (𝑓‘1o)} → ∃𝑦 𝐴 = {(𝑓‘∅), 𝑦}))
3228, 31syl 14 . . . 4 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → (𝐴 = {(𝑓‘∅), (𝑓‘1o)} → ∃𝑦 𝐴 = {(𝑓‘∅), 𝑦}))
33 preq1 3709 . . . . . . 7 (𝑥 = (𝑓‘∅) → {𝑥, 𝑦} = {(𝑓‘∅), 𝑦})
3433eqeq2d 2216 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥, 𝑦} ↔ 𝐴 = {(𝑓‘∅), 𝑦}))
3534exbidv 1847 . . . . 5 (𝑥 = (𝑓‘∅) → (∃𝑦 𝐴 = {𝑥, 𝑦} ↔ ∃𝑦 𝐴 = {(𝑓‘∅), 𝑦}))
3635spcegv 2860 . . . 4 ((𝑓‘∅) ∈ 𝐴 → (∃𝑦 𝐴 = {(𝑓‘∅), 𝑦} → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦}))
3726, 32, 36sylsyld 58 . . 3 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → (𝐴 = {(𝑓‘∅), (𝑓‘1o)} → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦}))
3823, 37mpd 13 . 2 ((𝐴 ≈ 2o𝑓:𝐴1-1-onto→2o) → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
392, 38exlimddv 1921 1 (𝐴 ≈ 2o → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wex 1514  wcel 2175  c0 3459  {cpr 3633   class class class wbr 4043  ccnv 4673  dom cdm 4674  ran crn 4675  cima 4677  Fun wfun 5264   Fn wfn 5265  1-1-ontowf1o 5269  cfv 5270  1oc1o 6494  2oc2o 6495  cen 6824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1o 6501  df-2o 6502  df-en 6827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator