ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgrex Unicode version

Theorem upgrex 15888
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v  |-  V  =  (Vtx `  G )
isupgr.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
upgrex  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  e.  V  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
Distinct variable groups:    x, G    x, V    x, E    x, F    x, A, y    y, E   
y, F    y, G    y, V

Proof of Theorem upgrex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 isupgr.v . . . . 5  |-  V  =  (Vtx `  G )
2 isupgr.e . . . . 5  |-  E  =  (iEdg `  G )
31, 2upgr1or2 15886 . . . 4  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( ( E `  F )  ~~  1o  \/  ( E `
 F )  ~~  2o ) )
4 en1 6941 . . . . . . 7  |-  ( ( E `  F ) 
~~  1o  <->  E. z ( E `
 F )  =  { z } )
5 dfsn2 3680 . . . . . . . . 9  |-  { z }  =  { z ,  z }
65eqeq2i 2240 . . . . . . . 8  |-  ( ( E `  F )  =  { z }  <-> 
( E `  F
)  =  { z ,  z } )
76exbii 1651 . . . . . . 7  |-  ( E. z ( E `  F )  =  {
z }  <->  E. z
( E `  F
)  =  { z ,  z } )
84, 7bitri 184 . . . . . 6  |-  ( ( E `  F ) 
~~  1o  <->  E. z ( E `
 F )  =  { z ,  z } )
9 preq2 3744 . . . . . . . . . . 11  |-  ( y  =  z  ->  { z ,  y }  =  { z ,  z } )
109eqeq2d 2241 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( E `  F
)  =  { z ,  y }  <->  ( E `  F )  =  {
z ,  z } ) )
1110spcegv 2891 . . . . . . . . 9  |-  ( z  e.  _V  ->  (
( E `  F
)  =  { z ,  z }  ->  E. y ( E `  F )  =  {
z ,  y } ) )
1211elv 2803 . . . . . . . 8  |-  ( ( E `  F )  =  { z ,  z }  ->  E. y
( E `  F
)  =  { z ,  y } )
13 preq1 3743 . . . . . . . . . . . 12  |-  ( x  =  z  ->  { x ,  y }  =  { z ,  y } )
1413eqeq2d 2241 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( E `  F
)  =  { x ,  y }  <->  ( E `  F )  =  {
z ,  y } ) )
1514exbidv 1871 . . . . . . . . . 10  |-  ( x  =  z  ->  ( E. y ( E `  F )  =  {
x ,  y }  <->  E. y ( E `  F )  =  {
z ,  y } ) )
1615spcegv 2891 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( E. y ( E `  F )  =  {
z ,  y }  ->  E. x E. y
( E `  F
)  =  { x ,  y } ) )
1716elv 2803 . . . . . . . 8  |-  ( E. y ( E `  F )  =  {
z ,  y }  ->  E. x E. y
( E `  F
)  =  { x ,  y } )
1812, 17syl 14 . . . . . . 7  |-  ( ( E `  F )  =  { z ,  z }  ->  E. x E. y ( E `  F )  =  {
x ,  y } )
1918exlimiv 1644 . . . . . 6  |-  ( E. z ( E `  F )  =  {
z ,  z }  ->  E. x E. y
( E `  F
)  =  { x ,  y } )
208, 19sylbi 121 . . . . 5  |-  ( ( E `  F ) 
~~  1o  ->  E. x E. y ( E `  F )  =  {
x ,  y } )
21 en2 6963 . . . . 5  |-  ( ( E `  F ) 
~~  2o  ->  E. x E. y ( E `  F )  =  {
x ,  y } )
2220, 21jaoi 721 . . . 4  |-  ( ( ( E `  F
)  ~~  1o  \/  ( E `  F ) 
~~  2o )  ->  E. x E. y ( E `  F )  =  { x ,  y } )
233, 22syl 14 . . 3  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x E. y ( E `  F )  =  {
x ,  y } )
24 simp1 1021 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  G  e. UPGraph )
25 simp3 1023 . . . . . . . . . 10  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  F  e.  A )
26 fndm 5416 . . . . . . . . . . 11  |-  ( E  Fn  A  ->  dom  E  =  A )
27263ad2ant2 1043 . . . . . . . . . 10  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  dom  E  =  A )
2825, 27eleqtrrd 2309 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  F  e.  dom  E )
291, 2upgrss 15884 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  F  e. 
dom  E )  -> 
( E `  F
)  C_  V )
3024, 28, 29syl2anc 411 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  C_  V
)
3130adantr 276 . . . . . . 7  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  ( E `  F )  C_  V )
32 vex 2802 . . . . . . . . 9  |-  x  e. 
_V
3332prid1 3772 . . . . . . . 8  |-  x  e. 
{ x ,  y }
34 simpr 110 . . . . . . . 8  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  ( E `  F )  =  { x ,  y } )
3533, 34eleqtrrid 2319 . . . . . . 7  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  x  e.  ( E `  F
) )
3631, 35sseldd 3225 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  x  e.  V )
37 vex 2802 . . . . . . . . 9  |-  y  e. 
_V
3837prid2 3773 . . . . . . . 8  |-  y  e. 
{ x ,  y }
3938, 34eleqtrrid 2319 . . . . . . 7  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  y  e.  ( E `  F
) )
4031, 39sseldd 3225 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  y  e.  V )
4136, 40, 34jca31 309 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  (
( x  e.  V  /\  y  e.  V
)  /\  ( E `  F )  =  {
x ,  y } ) )
4241ex 115 . . . 4  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( ( E `  F )  =  { x ,  y }  ->  ( (
x  e.  V  /\  y  e.  V )  /\  ( E `  F
)  =  { x ,  y } ) ) )
43422eximdv 1928 . . 3  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E. x E. y ( E `
 F )  =  { x ,  y }  ->  E. x E. y ( ( x  e.  V  /\  y  e.  V )  /\  ( E `  F )  =  { x ,  y } ) ) )
4423, 43mpd 13 . 2  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x E. y ( ( x  e.  V  /\  y  e.  V )  /\  ( E `  F )  =  { x ,  y } ) )
45 r2ex 2550 . 2  |-  ( E. x  e.  V  E. y  e.  V  ( E `  F )  =  { x ,  y }  <->  E. x E. y
( ( x  e.  V  /\  y  e.  V )  /\  ( E `  F )  =  { x ,  y } ) )
4644, 45sylibr 134 1  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  e.  V  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   _Vcvv 2799    C_ wss 3197   {csn 3666   {cpr 3667   class class class wbr 4082   dom cdm 4716    Fn wfn 5309   ` cfv 5314   1oc1o 6545   2oc2o 6546    ~~ cen 6875  Vtxcvtx 15798  iEdgciedg 15799  UPGraphcupgr 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-1o 6552  df-2o 6553  df-en 6878  df-sub 8307  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-dec 9567  df-ndx 13021  df-slot 13022  df-base 13024  df-edgf 15791  df-vtx 15800  df-iedg 15801  df-upgren 15878
This theorem is referenced by:  upgredg  15927
  Copyright terms: Public domain W3C validator