| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgrex | Unicode version | ||
| Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| Ref | Expression |
|---|---|
| isupgr.v |
|
| isupgr.e |
|
| Ref | Expression |
|---|---|
| upgrex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isupgr.v |
. . . . 5
| |
| 2 | isupgr.e |
. . . . 5
| |
| 3 | 1, 2 | upgr1or2 15886 |
. . . 4
|
| 4 | en1 6941 |
. . . . . . 7
| |
| 5 | dfsn2 3680 |
. . . . . . . . 9
| |
| 6 | 5 | eqeq2i 2240 |
. . . . . . . 8
|
| 7 | 6 | exbii 1651 |
. . . . . . 7
|
| 8 | 4, 7 | bitri 184 |
. . . . . 6
|
| 9 | preq2 3744 |
. . . . . . . . . . 11
| |
| 10 | 9 | eqeq2d 2241 |
. . . . . . . . . 10
|
| 11 | 10 | spcegv 2891 |
. . . . . . . . 9
|
| 12 | 11 | elv 2803 |
. . . . . . . 8
|
| 13 | preq1 3743 |
. . . . . . . . . . . 12
| |
| 14 | 13 | eqeq2d 2241 |
. . . . . . . . . . 11
|
| 15 | 14 | exbidv 1871 |
. . . . . . . . . 10
|
| 16 | 15 | spcegv 2891 |
. . . . . . . . 9
|
| 17 | 16 | elv 2803 |
. . . . . . . 8
|
| 18 | 12, 17 | syl 14 |
. . . . . . 7
|
| 19 | 18 | exlimiv 1644 |
. . . . . 6
|
| 20 | 8, 19 | sylbi 121 |
. . . . 5
|
| 21 | en2 6963 |
. . . . 5
| |
| 22 | 20, 21 | jaoi 721 |
. . . 4
|
| 23 | 3, 22 | syl 14 |
. . 3
|
| 24 | simp1 1021 |
. . . . . . . . 9
| |
| 25 | simp3 1023 |
. . . . . . . . . 10
| |
| 26 | fndm 5416 |
. . . . . . . . . . 11
| |
| 27 | 26 | 3ad2ant2 1043 |
. . . . . . . . . 10
|
| 28 | 25, 27 | eleqtrrd 2309 |
. . . . . . . . 9
|
| 29 | 1, 2 | upgrss 15884 |
. . . . . . . . 9
|
| 30 | 24, 28, 29 | syl2anc 411 |
. . . . . . . 8
|
| 31 | 30 | adantr 276 |
. . . . . . 7
|
| 32 | vex 2802 |
. . . . . . . . 9
| |
| 33 | 32 | prid1 3772 |
. . . . . . . 8
|
| 34 | simpr 110 |
. . . . . . . 8
| |
| 35 | 33, 34 | eleqtrrid 2319 |
. . . . . . 7
|
| 36 | 31, 35 | sseldd 3225 |
. . . . . 6
|
| 37 | vex 2802 |
. . . . . . . . 9
| |
| 38 | 37 | prid2 3773 |
. . . . . . . 8
|
| 39 | 38, 34 | eleqtrrid 2319 |
. . . . . . 7
|
| 40 | 31, 39 | sseldd 3225 |
. . . . . 6
|
| 41 | 36, 40, 34 | jca31 309 |
. . . . 5
|
| 42 | 41 | ex 115 |
. . . 4
|
| 43 | 42 | 2eximdv 1928 |
. . 3
|
| 44 | 23, 43 | mpd 13 |
. 2
|
| 45 | r2ex 2550 |
. 2
| |
| 46 | 44, 45 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-1o 6552 df-2o 6553 df-en 6878 df-sub 8307 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-dec 9567 df-ndx 13021 df-slot 13022 df-base 13024 df-edgf 15791 df-vtx 15800 df-iedg 15801 df-upgren 15878 |
| This theorem is referenced by: upgredg 15927 |
| Copyright terms: Public domain | W3C validator |