ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgrex Unicode version

Theorem upgrex 15749
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v  |-  V  =  (Vtx `  G )
isupgr.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
upgrex  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  e.  V  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
Distinct variable groups:    x, G    x, V    x, E    x, F    x, A, y    y, E   
y, F    y, G    y, V

Proof of Theorem upgrex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 isupgr.v . . . . 5  |-  V  =  (Vtx `  G )
2 isupgr.e . . . . 5  |-  E  =  (iEdg `  G )
31, 2upgr1or2 15747 . . . 4  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( ( E `  F )  ~~  1o  \/  ( E `
 F )  ~~  2o ) )
4 en1 6901 . . . . . . 7  |-  ( ( E `  F ) 
~~  1o  <->  E. z ( E `
 F )  =  { z } )
5 dfsn2 3649 . . . . . . . . 9  |-  { z }  =  { z ,  z }
65eqeq2i 2217 . . . . . . . 8  |-  ( ( E `  F )  =  { z }  <-> 
( E `  F
)  =  { z ,  z } )
76exbii 1629 . . . . . . 7  |-  ( E. z ( E `  F )  =  {
z }  <->  E. z
( E `  F
)  =  { z ,  z } )
84, 7bitri 184 . . . . . 6  |-  ( ( E `  F ) 
~~  1o  <->  E. z ( E `
 F )  =  { z ,  z } )
9 preq2 3713 . . . . . . . . . . 11  |-  ( y  =  z  ->  { z ,  y }  =  { z ,  z } )
109eqeq2d 2218 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( E `  F
)  =  { z ,  y }  <->  ( E `  F )  =  {
z ,  z } ) )
1110spcegv 2863 . . . . . . . . 9  |-  ( z  e.  _V  ->  (
( E `  F
)  =  { z ,  z }  ->  E. y ( E `  F )  =  {
z ,  y } ) )
1211elv 2777 . . . . . . . 8  |-  ( ( E `  F )  =  { z ,  z }  ->  E. y
( E `  F
)  =  { z ,  y } )
13 preq1 3712 . . . . . . . . . . . 12  |-  ( x  =  z  ->  { x ,  y }  =  { z ,  y } )
1413eqeq2d 2218 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( E `  F
)  =  { x ,  y }  <->  ( E `  F )  =  {
z ,  y } ) )
1514exbidv 1849 . . . . . . . . . 10  |-  ( x  =  z  ->  ( E. y ( E `  F )  =  {
x ,  y }  <->  E. y ( E `  F )  =  {
z ,  y } ) )
1615spcegv 2863 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( E. y ( E `  F )  =  {
z ,  y }  ->  E. x E. y
( E `  F
)  =  { x ,  y } ) )
1716elv 2777 . . . . . . . 8  |-  ( E. y ( E `  F )  =  {
z ,  y }  ->  E. x E. y
( E `  F
)  =  { x ,  y } )
1812, 17syl 14 . . . . . . 7  |-  ( ( E `  F )  =  { z ,  z }  ->  E. x E. y ( E `  F )  =  {
x ,  y } )
1918exlimiv 1622 . . . . . 6  |-  ( E. z ( E `  F )  =  {
z ,  z }  ->  E. x E. y
( E `  F
)  =  { x ,  y } )
208, 19sylbi 121 . . . . 5  |-  ( ( E `  F ) 
~~  1o  ->  E. x E. y ( E `  F )  =  {
x ,  y } )
21 en2 6923 . . . . 5  |-  ( ( E `  F ) 
~~  2o  ->  E. x E. y ( E `  F )  =  {
x ,  y } )
2220, 21jaoi 718 . . . 4  |-  ( ( ( E `  F
)  ~~  1o  \/  ( E `  F ) 
~~  2o )  ->  E. x E. y ( E `  F )  =  { x ,  y } )
233, 22syl 14 . . 3  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x E. y ( E `  F )  =  {
x ,  y } )
24 simp1 1000 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  G  e. UPGraph )
25 simp3 1002 . . . . . . . . . 10  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  F  e.  A )
26 fndm 5379 . . . . . . . . . . 11  |-  ( E  Fn  A  ->  dom  E  =  A )
27263ad2ant2 1022 . . . . . . . . . 10  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  dom  E  =  A )
2825, 27eleqtrrd 2286 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  F  e.  dom  E )
291, 2upgrss 15745 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  F  e. 
dom  E )  -> 
( E `  F
)  C_  V )
3024, 28, 29syl2anc 411 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  C_  V
)
3130adantr 276 . . . . . . 7  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  ( E `  F )  C_  V )
32 vex 2776 . . . . . . . . 9  |-  x  e. 
_V
3332prid1 3741 . . . . . . . 8  |-  x  e. 
{ x ,  y }
34 simpr 110 . . . . . . . 8  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  ( E `  F )  =  { x ,  y } )
3533, 34eleqtrrid 2296 . . . . . . 7  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  x  e.  ( E `  F
) )
3631, 35sseldd 3196 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  x  e.  V )
37 vex 2776 . . . . . . . . 9  |-  y  e. 
_V
3837prid2 3742 . . . . . . . 8  |-  y  e. 
{ x ,  y }
3938, 34eleqtrrid 2296 . . . . . . 7  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  y  e.  ( E `  F
) )
4031, 39sseldd 3196 . . . . . 6  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  y  e.  V )
4136, 40, 34jca31 309 . . . . 5  |-  ( ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A )  /\  ( E `  F )  =  { x ,  y } )  ->  (
( x  e.  V  /\  y  e.  V
)  /\  ( E `  F )  =  {
x ,  y } ) )
4241ex 115 . . . 4  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( ( E `  F )  =  { x ,  y }  ->  ( (
x  e.  V  /\  y  e.  V )  /\  ( E `  F
)  =  { x ,  y } ) ) )
43422eximdv 1906 . . 3  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E. x E. y ( E `
 F )  =  { x ,  y }  ->  E. x E. y ( ( x  e.  V  /\  y  e.  V )  /\  ( E `  F )  =  { x ,  y } ) ) )
4423, 43mpd 13 . 2  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x E. y ( ( x  e.  V  /\  y  e.  V )  /\  ( E `  F )  =  { x ,  y } ) )
45 r2ex 2527 . 2  |-  ( E. x  e.  V  E. y  e.  V  ( E `  F )  =  { x ,  y }  <->  E. x E. y
( ( x  e.  V  /\  y  e.  V )  /\  ( E `  F )  =  { x ,  y } ) )
4644, 45sylibr 134 1  |-  ( ( G  e. UPGraph  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  e.  V  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2177   E.wrex 2486   _Vcvv 2773    C_ wss 3168   {csn 3635   {cpr 3636   class class class wbr 4048   dom cdm 4680    Fn wfn 5272   ` cfv 5277   1oc1o 6505   2oc2o 6506    ~~ cen 6835  Vtxcvtx 15661  iEdgciedg 15662  UPGraphcupgr 15737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-1o 6512  df-2o 6513  df-en 6838  df-sub 8258  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-9 9115  df-n0 9309  df-dec 9518  df-ndx 12885  df-slot 12886  df-base 12888  df-edgf 15654  df-vtx 15663  df-iedg 15664  df-upgren 15739
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator