| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgrex | Unicode version | ||
| Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.) |
| Ref | Expression |
|---|---|
| isupgr.v |
|
| isupgr.e |
|
| Ref | Expression |
|---|---|
| upgrex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isupgr.v |
. . . . 5
| |
| 2 | isupgr.e |
. . . . 5
| |
| 3 | 1, 2 | upgr1or2 15747 |
. . . 4
|
| 4 | en1 6901 |
. . . . . . 7
| |
| 5 | dfsn2 3649 |
. . . . . . . . 9
| |
| 6 | 5 | eqeq2i 2217 |
. . . . . . . 8
|
| 7 | 6 | exbii 1629 |
. . . . . . 7
|
| 8 | 4, 7 | bitri 184 |
. . . . . 6
|
| 9 | preq2 3713 |
. . . . . . . . . . 11
| |
| 10 | 9 | eqeq2d 2218 |
. . . . . . . . . 10
|
| 11 | 10 | spcegv 2863 |
. . . . . . . . 9
|
| 12 | 11 | elv 2777 |
. . . . . . . 8
|
| 13 | preq1 3712 |
. . . . . . . . . . . 12
| |
| 14 | 13 | eqeq2d 2218 |
. . . . . . . . . . 11
|
| 15 | 14 | exbidv 1849 |
. . . . . . . . . 10
|
| 16 | 15 | spcegv 2863 |
. . . . . . . . 9
|
| 17 | 16 | elv 2777 |
. . . . . . . 8
|
| 18 | 12, 17 | syl 14 |
. . . . . . 7
|
| 19 | 18 | exlimiv 1622 |
. . . . . 6
|
| 20 | 8, 19 | sylbi 121 |
. . . . 5
|
| 21 | en2 6923 |
. . . . 5
| |
| 22 | 20, 21 | jaoi 718 |
. . . 4
|
| 23 | 3, 22 | syl 14 |
. . 3
|
| 24 | simp1 1000 |
. . . . . . . . 9
| |
| 25 | simp3 1002 |
. . . . . . . . . 10
| |
| 26 | fndm 5379 |
. . . . . . . . . . 11
| |
| 27 | 26 | 3ad2ant2 1022 |
. . . . . . . . . 10
|
| 28 | 25, 27 | eleqtrrd 2286 |
. . . . . . . . 9
|
| 29 | 1, 2 | upgrss 15745 |
. . . . . . . . 9
|
| 30 | 24, 28, 29 | syl2anc 411 |
. . . . . . . 8
|
| 31 | 30 | adantr 276 |
. . . . . . 7
|
| 32 | vex 2776 |
. . . . . . . . 9
| |
| 33 | 32 | prid1 3741 |
. . . . . . . 8
|
| 34 | simpr 110 |
. . . . . . . 8
| |
| 35 | 33, 34 | eleqtrrid 2296 |
. . . . . . 7
|
| 36 | 31, 35 | sseldd 3196 |
. . . . . 6
|
| 37 | vex 2776 |
. . . . . . . . 9
| |
| 38 | 37 | prid2 3742 |
. . . . . . . 8
|
| 39 | 38, 34 | eleqtrrid 2296 |
. . . . . . 7
|
| 40 | 31, 39 | sseldd 3196 |
. . . . . 6
|
| 41 | 36, 40, 34 | jca31 309 |
. . . . 5
|
| 42 | 41 | ex 115 |
. . . 4
|
| 43 | 42 | 2eximdv 1906 |
. . 3
|
| 44 | 23, 43 | mpd 13 |
. 2
|
| 45 | r2ex 2527 |
. 2
| |
| 46 | 44, 45 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-1o 6512 df-2o 6513 df-en 6838 df-sub 8258 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-9 9115 df-n0 9309 df-dec 9518 df-ndx 12885 df-slot 12886 df-base 12888 df-edgf 15654 df-vtx 15663 df-iedg 15664 df-upgren 15739 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |