ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfzo Unicode version

Theorem hashfzo 10673
Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
hashfzo  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ B ) )  =  ( B  -  A
) )

Proof of Theorem hashfzo
StepHypRef Expression
1 fzo0 10045 . . . . . 6  |-  ( A..^ A )  =  (/)
21fveq2i 5464 . . . . 5  |-  ( `  ( A..^ A ) )  =  ( `  (/) )
3 hash0 10648 . . . . 5  |-  ( `  (/) )  =  0
42, 3eqtri 2175 . . . 4  |-  ( `  ( A..^ A ) )  =  0
5 eluzel2 9423 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  ZZ )
65zcnd 9266 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  CC )
76subidd 8153 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A  -  A )  =  0 )
84, 7eqtr4id 2206 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ A ) )  =  ( A  -  A
) )
9 oveq2 5822 . . . . 5  |-  ( B  =  A  ->  ( A..^ B )  =  ( A..^ A ) )
109fveq2d 5465 . . . 4  |-  ( B  =  A  ->  ( `  ( A..^ B ) )  =  ( `  ( A..^ A ) ) )
11 oveq1 5821 . . . 4  |-  ( B  =  A  ->  ( B  -  A )  =  ( A  -  A ) )
1210, 11eqeq12d 2169 . . 3  |-  ( B  =  A  ->  (
( `  ( A..^ B
) )  =  ( B  -  A )  <-> 
( `  ( A..^ A
) )  =  ( A  -  A ) ) )
138, 12syl5ibrcom 156 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  =  A  ->  ( `  ( A..^ B ) )  =  ( B  -  A
) ) )
14 eluzelz 9427 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
15 fzoval 10025 . . . . . . 7  |-  ( B  e.  ZZ  ->  ( A..^ B )  =  ( A ... ( B  -  1 ) ) )
1614, 15syl 14 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ B )  =  ( A ... ( B  -  1 ) ) )
1716fveq2d 5465 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ B ) )  =  ( `  ( A ... ( B  -  1 ) ) ) )
1817adantr 274 . . . 4  |-  ( ( B  e.  ( ZZ>= `  A )  /\  ( B  -  1 )  e.  ( ZZ>= `  A
) )  ->  ( `  ( A..^ B ) )  =  ( `  ( A ... ( B  - 
1 ) ) ) )
19 hashfz 10672 . . . . 5  |-  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  ->  ( `  ( A ... ( B  - 
1 ) ) )  =  ( ( ( B  -  1 )  -  A )  +  1 ) )
2014zcnd 9266 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  CC )
21 1cnd 7873 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  1  e.  CC )
2220, 21, 6sub32d 8197 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  -  1 )  -  A )  =  ( ( B  -  A )  -  1 ) )
2322oveq1d 5829 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( (
( B  -  1 )  -  A )  +  1 )  =  ( ( ( B  -  A )  - 
1 )  +  1 ) )
2420, 6subcld 8165 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  CC )
25 ax-1cn 7804 . . . . . . 7  |-  1  e.  CC
26 npcan 8063 . . . . . . 7  |-  ( ( ( B  -  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( B  -  A )  - 
1 )  +  1 )  =  ( B  -  A ) )
2724, 25, 26sylancl 410 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( (
( B  -  A
)  -  1 )  +  1 )  =  ( B  -  A
) )
2823, 27eqtrd 2187 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( (
( B  -  1 )  -  A )  +  1 )  =  ( B  -  A
) )
2919, 28sylan9eqr 2209 . . . 4  |-  ( ( B  e.  ( ZZ>= `  A )  /\  ( B  -  1 )  e.  ( ZZ>= `  A
) )  ->  ( `  ( A ... ( B  -  1 ) ) )  =  ( B  -  A ) )
3018, 29eqtrd 2187 . . 3  |-  ( ( B  e.  ( ZZ>= `  A )  /\  ( B  -  1 )  e.  ( ZZ>= `  A
) )  ->  ( `  ( A..^ B ) )  =  ( B  -  A ) )
3130ex 114 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ B ) )  =  ( B  -  A
) ) )
32 uzm1 9448 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  =  A  \/  ( B  -  1 )  e.  ( ZZ>= `  A
) ) )
3313, 31, 32mpjaod 708 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ B ) )  =  ( B  -  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125   (/)c0 3390   ` cfv 5163  (class class class)co 5814   CCcc 7709   0cc0 7711   1c1 7712    + caddc 7714    - cmin 8025   ZZcz 9146   ZZ>=cuz 9418   ...cfz 9890  ..^cfzo 10019  ♯chash 10626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-1o 6353  df-er 6469  df-en 6675  df-dom 6676  df-fin 6677  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419  df-fz 9891  df-fzo 10020  df-ihash 10627
This theorem is referenced by:  hashfzo0  10674
  Copyright terms: Public domain W3C validator