ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfzo Unicode version

Theorem hashfzo 10194
Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
hashfzo  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ B ) )  =  ( B  -  A
) )

Proof of Theorem hashfzo
StepHypRef Expression
1 eluzel2 8993 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  ZZ )
21zcnd 8839 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  CC )
32subidd 7760 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A  -  A )  =  0 )
4 fzo0 9544 . . . . . 6  |-  ( A..^ A )  =  (/)
54fveq2i 5292 . . . . 5  |-  ( `  ( A..^ A ) )  =  ( `  (/) )
6 hash0 10169 . . . . 5  |-  ( `  (/) )  =  0
75, 6eqtri 2108 . . . 4  |-  ( `  ( A..^ A ) )  =  0
83, 7syl6reqr 2139 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ A ) )  =  ( A  -  A
) )
9 oveq2 5642 . . . . 5  |-  ( B  =  A  ->  ( A..^ B )  =  ( A..^ A ) )
109fveq2d 5293 . . . 4  |-  ( B  =  A  ->  ( `  ( A..^ B ) )  =  ( `  ( A..^ A ) ) )
11 oveq1 5641 . . . 4  |-  ( B  =  A  ->  ( B  -  A )  =  ( A  -  A ) )
1210, 11eqeq12d 2102 . . 3  |-  ( B  =  A  ->  (
( `  ( A..^ B
) )  =  ( B  -  A )  <-> 
( `  ( A..^ A
) )  =  ( A  -  A ) ) )
138, 12syl5ibrcom 155 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  =  A  ->  ( `  ( A..^ B ) )  =  ( B  -  A
) ) )
14 eluzelz 8997 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
15 fzoval 9524 . . . . . . 7  |-  ( B  e.  ZZ  ->  ( A..^ B )  =  ( A ... ( B  -  1 ) ) )
1614, 15syl 14 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ B )  =  ( A ... ( B  -  1 ) ) )
1716fveq2d 5293 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ B ) )  =  ( `  ( A ... ( B  -  1 ) ) ) )
1817adantr 270 . . . 4  |-  ( ( B  e.  ( ZZ>= `  A )  /\  ( B  -  1 )  e.  ( ZZ>= `  A
) )  ->  ( `  ( A..^ B ) )  =  ( `  ( A ... ( B  - 
1 ) ) ) )
19 hashfz 10193 . . . . 5  |-  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  ->  ( `  ( A ... ( B  - 
1 ) ) )  =  ( ( ( B  -  1 )  -  A )  +  1 ) )
2014zcnd 8839 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  CC )
21 1cnd 7483 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  1  e.  CC )
2220, 21, 2sub32d 7804 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  -  1 )  -  A )  =  ( ( B  -  A )  -  1 ) )
2322oveq1d 5649 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( (
( B  -  1 )  -  A )  +  1 )  =  ( ( ( B  -  A )  - 
1 )  +  1 ) )
2420, 2subcld 7772 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  CC )
25 ax-1cn 7417 . . . . . . 7  |-  1  e.  CC
26 npcan 7670 . . . . . . 7  |-  ( ( ( B  -  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( B  -  A )  - 
1 )  +  1 )  =  ( B  -  A ) )
2724, 25, 26sylancl 404 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( (
( B  -  A
)  -  1 )  +  1 )  =  ( B  -  A
) )
2823, 27eqtrd 2120 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( (
( B  -  1 )  -  A )  +  1 )  =  ( B  -  A
) )
2919, 28sylan9eqr 2142 . . . 4  |-  ( ( B  e.  ( ZZ>= `  A )  /\  ( B  -  1 )  e.  ( ZZ>= `  A
) )  ->  ( `  ( A ... ( B  -  1 ) ) )  =  ( B  -  A ) )
3018, 29eqtrd 2120 . . 3  |-  ( ( B  e.  ( ZZ>= `  A )  /\  ( B  -  1 )  e.  ( ZZ>= `  A
) )  ->  ( `  ( A..^ B ) )  =  ( B  -  A ) )
3130ex 113 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ B ) )  =  ( B  -  A
) ) )
32 uzm1 9018 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  =  A  \/  ( B  -  1 )  e.  ( ZZ>= `  A
) ) )
3313, 31, 32mpjaod 673 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ B ) )  =  ( B  -  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   (/)c0 3284   ` cfv 5002  (class class class)co 5634   CCcc 7327   0cc0 7329   1c1 7330    + caddc 7332    - cmin 7632   ZZcz 8720   ZZ>=cuz 8988   ...cfz 9393  ..^cfzo 9518  ♯chash 10147
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-1o 6163  df-er 6272  df-en 6438  df-dom 6439  df-fin 6440  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-fz 9394  df-fzo 9519  df-ihash 10148
This theorem is referenced by:  hashfzo0  10195
  Copyright terms: Public domain W3C validator