ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfzo Unicode version

Theorem hashfzo 10804
Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
hashfzo  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ B ) )  =  ( B  -  A
) )

Proof of Theorem hashfzo
StepHypRef Expression
1 fzo0 10170 . . . . . 6  |-  ( A..^ A )  =  (/)
21fveq2i 5520 . . . . 5  |-  ( `  ( A..^ A ) )  =  ( `  (/) )
3 hash0 10778 . . . . 5  |-  ( `  (/) )  =  0
42, 3eqtri 2198 . . . 4  |-  ( `  ( A..^ A ) )  =  0
5 eluzel2 9535 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  ZZ )
65zcnd 9378 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  CC )
76subidd 8258 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A  -  A )  =  0 )
84, 7eqtr4id 2229 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ A ) )  =  ( A  -  A
) )
9 oveq2 5885 . . . . 5  |-  ( B  =  A  ->  ( A..^ B )  =  ( A..^ A ) )
109fveq2d 5521 . . . 4  |-  ( B  =  A  ->  ( `  ( A..^ B ) )  =  ( `  ( A..^ A ) ) )
11 oveq1 5884 . . . 4  |-  ( B  =  A  ->  ( B  -  A )  =  ( A  -  A ) )
1210, 11eqeq12d 2192 . . 3  |-  ( B  =  A  ->  (
( `  ( A..^ B
) )  =  ( B  -  A )  <-> 
( `  ( A..^ A
) )  =  ( A  -  A ) ) )
138, 12syl5ibrcom 157 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  =  A  ->  ( `  ( A..^ B ) )  =  ( B  -  A
) ) )
14 eluzelz 9539 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
15 fzoval 10150 . . . . . . 7  |-  ( B  e.  ZZ  ->  ( A..^ B )  =  ( A ... ( B  -  1 ) ) )
1614, 15syl 14 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ B )  =  ( A ... ( B  -  1 ) ) )
1716fveq2d 5521 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ B ) )  =  ( `  ( A ... ( B  -  1 ) ) ) )
1817adantr 276 . . . 4  |-  ( ( B  e.  ( ZZ>= `  A )  /\  ( B  -  1 )  e.  ( ZZ>= `  A
) )  ->  ( `  ( A..^ B ) )  =  ( `  ( A ... ( B  - 
1 ) ) ) )
19 hashfz 10803 . . . . 5  |-  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  ->  ( `  ( A ... ( B  - 
1 ) ) )  =  ( ( ( B  -  1 )  -  A )  +  1 ) )
2014zcnd 9378 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  CC )
21 1cnd 7975 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  1  e.  CC )
2220, 21, 6sub32d 8302 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  -  1 )  -  A )  =  ( ( B  -  A )  -  1 ) )
2322oveq1d 5892 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( (
( B  -  1 )  -  A )  +  1 )  =  ( ( ( B  -  A )  - 
1 )  +  1 ) )
2420, 6subcld 8270 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  CC )
25 ax-1cn 7906 . . . . . . 7  |-  1  e.  CC
26 npcan 8168 . . . . . . 7  |-  ( ( ( B  -  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( B  -  A )  - 
1 )  +  1 )  =  ( B  -  A ) )
2724, 25, 26sylancl 413 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( (
( B  -  A
)  -  1 )  +  1 )  =  ( B  -  A
) )
2823, 27eqtrd 2210 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( (
( B  -  1 )  -  A )  +  1 )  =  ( B  -  A
) )
2919, 28sylan9eqr 2232 . . . 4  |-  ( ( B  e.  ( ZZ>= `  A )  /\  ( B  -  1 )  e.  ( ZZ>= `  A
) )  ->  ( `  ( A ... ( B  -  1 ) ) )  =  ( B  -  A ) )
3018, 29eqtrd 2210 . . 3  |-  ( ( B  e.  ( ZZ>= `  A )  /\  ( B  -  1 )  e.  ( ZZ>= `  A
) )  ->  ( `  ( A..^ B ) )  =  ( B  -  A ) )
3130ex 115 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ B ) )  =  ( B  -  A
) ) )
32 uzm1 9560 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  =  A  \/  ( B  -  1 )  e.  ( ZZ>= `  A
) ) )
3313, 31, 32mpjaod 718 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A..^ B ) )  =  ( B  -  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   (/)c0 3424   ` cfv 5218  (class class class)co 5877   CCcc 7811   0cc0 7813   1c1 7814    + caddc 7816    - cmin 8130   ZZcz 9255   ZZ>=cuz 9530   ...cfz 10010  ..^cfzo 10144  ♯chash 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-fzo 10145  df-ihash 10758
This theorem is referenced by:  hashfzo0  10805
  Copyright terms: Public domain W3C validator