Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashfzo | Unicode version |
Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
hashfzo | ♯..^ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzo0 10103 | . . . . . 6 ..^ | |
2 | 1 | fveq2i 5489 | . . . . 5 ♯..^ ♯ |
3 | hash0 10710 | . . . . 5 ♯ | |
4 | 2, 3 | eqtri 2186 | . . . 4 ♯..^ |
5 | eluzel2 9471 | . . . . . 6 | |
6 | 5 | zcnd 9314 | . . . . 5 |
7 | 6 | subidd 8197 | . . . 4 |
8 | 4, 7 | eqtr4id 2218 | . . 3 ♯..^ |
9 | oveq2 5850 | . . . . 5 ..^ ..^ | |
10 | 9 | fveq2d 5490 | . . . 4 ♯..^ ♯..^ |
11 | oveq1 5849 | . . . 4 | |
12 | 10, 11 | eqeq12d 2180 | . . 3 ♯..^ ♯..^ |
13 | 8, 12 | syl5ibrcom 156 | . 2 ♯..^ |
14 | eluzelz 9475 | . . . . . . 7 | |
15 | fzoval 10083 | . . . . . . 7 ..^ | |
16 | 14, 15 | syl 14 | . . . . . 6 ..^ |
17 | 16 | fveq2d 5490 | . . . . 5 ♯..^ ♯ |
18 | 17 | adantr 274 | . . . 4 ♯..^ ♯ |
19 | hashfz 10734 | . . . . 5 ♯ | |
20 | 14 | zcnd 9314 | . . . . . . . 8 |
21 | 1cnd 7915 | . . . . . . . 8 | |
22 | 20, 21, 6 | sub32d 8241 | . . . . . . 7 |
23 | 22 | oveq1d 5857 | . . . . . 6 |
24 | 20, 6 | subcld 8209 | . . . . . . 7 |
25 | ax-1cn 7846 | . . . . . . 7 | |
26 | npcan 8107 | . . . . . . 7 | |
27 | 24, 25, 26 | sylancl 410 | . . . . . 6 |
28 | 23, 27 | eqtrd 2198 | . . . . 5 |
29 | 19, 28 | sylan9eqr 2221 | . . . 4 ♯ |
30 | 18, 29 | eqtrd 2198 | . . 3 ♯..^ |
31 | 30 | ex 114 | . 2 ♯..^ |
32 | uzm1 9496 | . 2 | |
33 | 13, 31, 32 | mpjaod 708 | 1 ♯..^ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 c0 3409 cfv 5188 (class class class)co 5842 cc 7751 cc0 7753 c1 7754 caddc 7756 cmin 8069 cz 9191 cuz 9466 cfz 9944 ..^cfzo 10077 ♯chash 10688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-1o 6384 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-fzo 10078 df-ihash 10689 |
This theorem is referenced by: hashfzo0 10736 |
Copyright terms: Public domain | W3C validator |