ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uz0d Unicode version

Theorem frec2uz0d 10334
Description: The mapping  G is a one-to-one mapping from  om onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number  C (normally 0 for the upper integers  NN0 or 1 for the upper integers  NN), 1 maps to  C + 1, etc. This theorem shows the value of  G at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uz0d  |-  ( ph  ->  ( G `  (/) )  =  C )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    G( x)

Proof of Theorem frec2uz0d
StepHypRef Expression
1 frec2uz.2 . . 3  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
21fveq1i 5487 . 2  |-  ( G `
 (/) )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  (/) )
3 frec2uz.1 . . 3  |-  ( ph  ->  C  e.  ZZ )
4 frec0g 6365 . . 3  |-  ( C  e.  ZZ  ->  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  (/) )  =  C )
53, 4syl 14 . 2  |-  ( ph  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  (/) )  =  C )
62, 5syl5eq 2211 1  |-  ( ph  ->  ( G `  (/) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   (/)c0 3409    |-> cmpt 4043   ` cfv 5188  (class class class)co 5842  freccfrec 6358   1c1 7754    + caddc 7756   ZZcz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-recs 6273  df-frec 6359
This theorem is referenced by:  frec2uzuzd  10337  frec2uzrand  10340  frec2uzrdg  10344  frecuzrdgg  10351  frecfzennn  10361  0tonninf  10374  1tonninf  10375  omgadd  10715  ennnfonelem1  12340  ennnfonelemhf1o  12346  012of  13875  2o01f  13876  isomninnlem  13909  iswomninnlem  13928  ismkvnnlem  13931
  Copyright terms: Public domain W3C validator