ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uz0d Unicode version

Theorem frec2uz0d 10621
Description: The mapping  G is a one-to-one mapping from  om onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number  C (normally 0 for the upper integers  NN0 or 1 for the upper integers  NN), 1 maps to  C + 1, etc. This theorem shows the value of  G at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uz0d  |-  ( ph  ->  ( G `  (/) )  =  C )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    G( x)

Proof of Theorem frec2uz0d
StepHypRef Expression
1 frec2uz.2 . . 3  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
21fveq1i 5628 . 2  |-  ( G `
 (/) )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  (/) )
3 frec2uz.1 . . 3  |-  ( ph  ->  C  e.  ZZ )
4 frec0g 6543 . . 3  |-  ( C  e.  ZZ  ->  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  (/) )  =  C )
53, 4syl 14 . 2  |-  ( ph  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  (/) )  =  C )
62, 5eqtrid 2274 1  |-  ( ph  ->  ( G `  (/) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   (/)c0 3491    |-> cmpt 4145   ` cfv 5318  (class class class)co 6001  freccfrec 6536   1c1 8000    + caddc 8002   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-recs 6451  df-frec 6537
This theorem is referenced by:  frec2uzuzd  10624  frec2uzrand  10627  frec2uzrdg  10631  frecuzrdgg  10638  frecfzennn  10648  0tonninf  10662  1tonninf  10663  omgadd  11024  ennnfonelem1  12978  ennnfonelemhf1o  12984  012of  16357  2o01f  16358  isomninnlem  16398  iswomninnlem  16417  ismkvnnlem  16420
  Copyright terms: Public domain W3C validator