ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uz0d Unicode version

Theorem frec2uz0d 10508
Description: The mapping  G is a one-to-one mapping from  om onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number  C (normally 0 for the upper integers  NN0 or 1 for the upper integers  NN), 1 maps to  C + 1, etc. This theorem shows the value of  G at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frec2uz0d  |-  ( ph  ->  ( G `  (/) )  =  C )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    G( x)

Proof of Theorem frec2uz0d
StepHypRef Expression
1 frec2uz.2 . . 3  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
21fveq1i 5562 . 2  |-  ( G `
 (/) )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  (/) )
3 frec2uz.1 . . 3  |-  ( ph  ->  C  e.  ZZ )
4 frec0g 6464 . . 3  |-  ( C  e.  ZZ  ->  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) `  (/) )  =  C )
53, 4syl 14 . 2  |-  ( ph  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  (/) )  =  C )
62, 5eqtrid 2241 1  |-  ( ph  ->  ( G `  (/) )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   (/)c0 3451    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925  freccfrec 6457   1c1 7897    + caddc 7899   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-recs 6372  df-frec 6458
This theorem is referenced by:  frec2uzuzd  10511  frec2uzrand  10514  frec2uzrdg  10518  frecuzrdgg  10525  frecfzennn  10535  0tonninf  10549  1tonninf  10550  omgadd  10911  ennnfonelem1  12649  ennnfonelemhf1o  12655  012of  15724  2o01f  15725  isomninnlem  15761  iswomninnlem  15780  ismkvnnlem  15783
  Copyright terms: Public domain W3C validator