Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frec2uz0d | Unicode version |
Description: The mapping is a one-to-one mapping from onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number (normally 0 for the upper integers or 1 for the upper integers ), 1 maps to + 1, etc. This theorem shows the value of at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | |
frec2uz.2 | frec |
Ref | Expression |
---|---|
frec2uz0d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uz.2 | . . 3 frec | |
2 | 1 | fveq1i 5482 | . 2 frec |
3 | frec2uz.1 | . . 3 | |
4 | frec0g 6357 | . . 3 frec | |
5 | 3, 4 | syl 14 | . 2 frec |
6 | 2, 5 | syl5eq 2209 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1342 wcel 2135 c0 3405 cmpt 4038 cfv 5183 (class class class)co 5837 freccfrec 6350 c1 7746 caddc 7748 cz 9183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-tr 4076 df-id 4266 df-iord 4339 df-on 4341 df-suc 4344 df-iom 4563 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-res 4611 df-iota 5148 df-fun 5185 df-fn 5186 df-fv 5191 df-recs 6265 df-frec 6351 |
This theorem is referenced by: frec2uzuzd 10328 frec2uzrand 10331 frec2uzrdg 10335 frecuzrdgg 10342 frecfzennn 10352 0tonninf 10365 1tonninf 10366 omgadd 10705 ennnfonelem1 12303 ennnfonelemhf1o 12309 012of 13737 2o01f 13738 isomninnlem 13771 iswomninnlem 13790 ismkvnnlem 13793 |
Copyright terms: Public domain | W3C validator |