ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uz0d GIF version

Theorem frec2uz0d 10542
Description: The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers 0 or 1 for the upper integers ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frec2uz0d (𝜑 → (𝐺‘∅) = 𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uz0d
StepHypRef Expression
1 frec2uz.2 . . 3 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
21fveq1i 5576 . 2 (𝐺‘∅) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘∅)
3 frec2uz.1 . . 3 (𝜑𝐶 ∈ ℤ)
4 frec0g 6482 . . 3 (𝐶 ∈ ℤ → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘∅) = 𝐶)
53, 4syl 14 . 2 (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘∅) = 𝐶)
62, 5eqtrid 2249 1 (𝜑 → (𝐺‘∅) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  c0 3459  cmpt 4104  cfv 5270  (class class class)co 5943  freccfrec 6475  1c1 7925   + caddc 7927  cz 9371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-recs 6390  df-frec 6476
This theorem is referenced by:  frec2uzuzd  10545  frec2uzrand  10548  frec2uzrdg  10552  frecuzrdgg  10559  frecfzennn  10569  0tonninf  10583  1tonninf  10584  omgadd  10945  ennnfonelem1  12749  ennnfonelemhf1o  12755  012of  15892  2o01f  15893  isomninnlem  15931  iswomninnlem  15950  ismkvnnlem  15953
  Copyright terms: Public domain W3C validator