| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec2uz0d | GIF version | ||
| Description: The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers ℕ0 or 1 for the upper integers ℕ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.) |
| Ref | Expression |
|---|---|
| frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| Ref | Expression |
|---|---|
| frec2uz0d | ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frec2uz.2 | . . 3 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
| 2 | 1 | fveq1i 5627 | . 2 ⊢ (𝐺‘∅) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘∅) |
| 3 | frec2uz.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 4 | frec0g 6541 | . . 3 ⊢ (𝐶 ∈ ℤ → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘∅) = 𝐶) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘∅) = 𝐶) |
| 6 | 2, 5 | eqtrid 2274 | 1 ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∅c0 3491 ↦ cmpt 4144 ‘cfv 5317 (class class class)co 6000 freccfrec 6534 1c1 7996 + caddc 7998 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-recs 6449 df-frec 6535 |
| This theorem is referenced by: frec2uzuzd 10619 frec2uzrand 10622 frec2uzrdg 10626 frecuzrdgg 10633 frecfzennn 10643 0tonninf 10657 1tonninf 10658 omgadd 11019 ennnfonelem1 12973 ennnfonelemhf1o 12979 012of 16316 2o01f 16317 isomninnlem 16357 iswomninnlem 16376 ismkvnnlem 16379 |
| Copyright terms: Public domain | W3C validator |