![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frec2uz0d | GIF version |
Description: The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers ℕ0 or 1 for the upper integers ℕ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
Ref | Expression |
---|---|
frec2uz0d | ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uz.2 | . . 3 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
2 | 1 | fveq1i 5555 | . 2 ⊢ (𝐺‘∅) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘∅) |
3 | frec2uz.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
4 | frec0g 6450 | . . 3 ⊢ (𝐶 ∈ ℤ → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘∅) = 𝐶) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘∅) = 𝐶) |
6 | 2, 5 | eqtrid 2238 | 1 ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∅c0 3446 ↦ cmpt 4090 ‘cfv 5254 (class class class)co 5918 freccfrec 6443 1c1 7873 + caddc 7875 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-recs 6358 df-frec 6444 |
This theorem is referenced by: frec2uzuzd 10473 frec2uzrand 10476 frec2uzrdg 10480 frecuzrdgg 10487 frecfzennn 10497 0tonninf 10511 1tonninf 10512 omgadd 10873 ennnfonelem1 12564 ennnfonelemhf1o 12570 012of 15486 2o01f 15487 isomninnlem 15520 iswomninnlem 15539 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |