| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec2uz0d | GIF version | ||
| Description: The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers ℕ0 or 1 for the upper integers ℕ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.) |
| Ref | Expression |
|---|---|
| frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| Ref | Expression |
|---|---|
| frec2uz0d | ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frec2uz.2 | . . 3 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
| 2 | 1 | fveq1i 5600 | . 2 ⊢ (𝐺‘∅) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘∅) |
| 3 | frec2uz.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 4 | frec0g 6506 | . . 3 ⊢ (𝐶 ∈ ℤ → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘∅) = 𝐶) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘∅) = 𝐶) |
| 6 | 2, 5 | eqtrid 2252 | 1 ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ∅c0 3468 ↦ cmpt 4121 ‘cfv 5290 (class class class)co 5967 freccfrec 6499 1c1 7961 + caddc 7963 ℤcz 9407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-recs 6414 df-frec 6500 |
| This theorem is referenced by: frec2uzuzd 10584 frec2uzrand 10587 frec2uzrdg 10591 frecuzrdgg 10598 frecfzennn 10608 0tonninf 10622 1tonninf 10623 omgadd 10984 ennnfonelem1 12893 ennnfonelemhf1o 12899 012of 16130 2o01f 16131 isomninnlem 16171 iswomninnlem 16190 ismkvnnlem 16193 |
| Copyright terms: Public domain | W3C validator |