ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzonmapblen Unicode version

Theorem fzonmapblen 9995
Description: The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less then the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.)
Assertion
Ref Expression
fzonmapblen  |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N )  /\  B  <  A
)  ->  ( B  +  ( N  -  A ) )  < 
N )

Proof of Theorem fzonmapblen
StepHypRef Expression
1 elfzo0 9990 . . . 4  |-  ( A  e.  ( 0..^ N )  <->  ( A  e. 
NN0  /\  N  e.  NN  /\  A  <  N
) )
2 nn0re 9010 . . . . . 6  |-  ( A  e.  NN0  ->  A  e.  RR )
3 nnre 8751 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR )
42, 3anim12i 336 . . . . 5  |-  ( ( A  e.  NN0  /\  N  e.  NN )  ->  ( A  e.  RR  /\  N  e.  RR ) )
543adant3 1002 . . . 4  |-  ( ( A  e.  NN0  /\  N  e.  NN  /\  A  <  N )  ->  ( A  e.  RR  /\  N  e.  RR ) )
61, 5sylbi 120 . . 3  |-  ( A  e.  ( 0..^ N )  ->  ( A  e.  RR  /\  N  e.  RR ) )
7 elfzoelz 9955 . . . 4  |-  ( B  e.  ( 0..^ N )  ->  B  e.  ZZ )
87zred 9197 . . 3  |-  ( B  e.  ( 0..^ N )  ->  B  e.  RR )
9 simpr 109 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  B  e.  RR )
10 simpll 519 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  A  e.  RR )
11 resubcl 8050 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  A  e.  RR )  ->  ( N  -  A
)  e.  RR )
1211ancoms 266 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  RR )  ->  ( N  -  A
)  e.  RR )
1312adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( N  -  A )  e.  RR )
149, 10, 13ltadd1d 8324 . . . . . 6  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( B  < 
A  <->  ( B  +  ( N  -  A
) )  <  ( A  +  ( N  -  A ) ) ) )
1514biimpa 294 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( B  +  ( N  -  A ) )  < 
( A  +  ( N  -  A ) ) )
16 recn 7777 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
17 recn 7777 . . . . . . . . 9  |-  ( N  e.  RR  ->  N  e.  CC )
1816, 17anim12i 336 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  RR )  ->  ( A  e.  CC  /\  N  e.  CC ) )
1918adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( A  e.  CC  /\  N  e.  CC ) )
2019adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( A  e.  CC  /\  N  e.  CC ) )
21 pncan3 7994 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( A  +  ( N  -  A ) )  =  N )
2220, 21syl 14 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( A  +  ( N  -  A ) )  =  N )
2315, 22breqtrd 3962 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( B  +  ( N  -  A ) )  < 
N )
2423ex 114 . . 3  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( B  < 
A  ->  ( B  +  ( N  -  A ) )  < 
N ) )
256, 8, 24syl2an 287 . 2  |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N ) )  ->  ( B  <  A  ->  ( B  +  ( N  -  A ) )  < 
N ) )
26253impia 1179 1  |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N )  /\  B  <  A
)  ->  ( B  +  ( N  -  A ) )  < 
N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644    + caddc 7647    < clt 7824    - cmin 7957   NNcn 8744   NN0cn0 9001  ..^cfzo 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator