ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzonmapblen Unicode version

Theorem fzonmapblen 10189
Description: The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less then the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.)
Assertion
Ref Expression
fzonmapblen  |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N )  /\  B  <  A
)  ->  ( B  +  ( N  -  A ) )  < 
N )

Proof of Theorem fzonmapblen
StepHypRef Expression
1 elfzo0 10184 . . . 4  |-  ( A  e.  ( 0..^ N )  <->  ( A  e. 
NN0  /\  N  e.  NN  /\  A  <  N
) )
2 nn0re 9187 . . . . . 6  |-  ( A  e.  NN0  ->  A  e.  RR )
3 nnre 8928 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR )
42, 3anim12i 338 . . . . 5  |-  ( ( A  e.  NN0  /\  N  e.  NN )  ->  ( A  e.  RR  /\  N  e.  RR ) )
543adant3 1017 . . . 4  |-  ( ( A  e.  NN0  /\  N  e.  NN  /\  A  <  N )  ->  ( A  e.  RR  /\  N  e.  RR ) )
61, 5sylbi 121 . . 3  |-  ( A  e.  ( 0..^ N )  ->  ( A  e.  RR  /\  N  e.  RR ) )
7 elfzoelz 10149 . . . 4  |-  ( B  e.  ( 0..^ N )  ->  B  e.  ZZ )
87zred 9377 . . 3  |-  ( B  e.  ( 0..^ N )  ->  B  e.  RR )
9 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  B  e.  RR )
10 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  A  e.  RR )
11 resubcl 8223 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  A  e.  RR )  ->  ( N  -  A
)  e.  RR )
1211ancoms 268 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  RR )  ->  ( N  -  A
)  e.  RR )
1312adantr 276 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( N  -  A )  e.  RR )
149, 10, 13ltadd1d 8497 . . . . . 6  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( B  < 
A  <->  ( B  +  ( N  -  A
) )  <  ( A  +  ( N  -  A ) ) ) )
1514biimpa 296 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( B  +  ( N  -  A ) )  < 
( A  +  ( N  -  A ) ) )
16 recn 7946 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
17 recn 7946 . . . . . . . . 9  |-  ( N  e.  RR  ->  N  e.  CC )
1816, 17anim12i 338 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  RR )  ->  ( A  e.  CC  /\  N  e.  CC ) )
1918adantr 276 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( A  e.  CC  /\  N  e.  CC ) )
2019adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( A  e.  CC  /\  N  e.  CC ) )
21 pncan3 8167 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( A  +  ( N  -  A ) )  =  N )
2220, 21syl 14 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( A  +  ( N  -  A ) )  =  N )
2315, 22breqtrd 4031 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( B  +  ( N  -  A ) )  < 
N )
2423ex 115 . . 3  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( B  < 
A  ->  ( B  +  ( N  -  A ) )  < 
N ) )
256, 8, 24syl2an 289 . 2  |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N ) )  ->  ( B  <  A  ->  ( B  +  ( N  -  A ) )  < 
N ) )
26253impia 1200 1  |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N )  /\  B  <  A
)  ->  ( B  +  ( N  -  A ) )  < 
N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813    + caddc 7816    < clt 7994    - cmin 8130   NNcn 8921   NN0cn0 9178  ..^cfzo 10144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-fzo 10145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator