ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzonmapblen Unicode version

Theorem fzonmapblen 10143
Description: The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less then the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.)
Assertion
Ref Expression
fzonmapblen  |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N )  /\  B  <  A
)  ->  ( B  +  ( N  -  A ) )  < 
N )

Proof of Theorem fzonmapblen
StepHypRef Expression
1 elfzo0 10138 . . . 4  |-  ( A  e.  ( 0..^ N )  <->  ( A  e. 
NN0  /\  N  e.  NN  /\  A  <  N
) )
2 nn0re 9144 . . . . . 6  |-  ( A  e.  NN0  ->  A  e.  RR )
3 nnre 8885 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR )
42, 3anim12i 336 . . . . 5  |-  ( ( A  e.  NN0  /\  N  e.  NN )  ->  ( A  e.  RR  /\  N  e.  RR ) )
543adant3 1012 . . . 4  |-  ( ( A  e.  NN0  /\  N  e.  NN  /\  A  <  N )  ->  ( A  e.  RR  /\  N  e.  RR ) )
61, 5sylbi 120 . . 3  |-  ( A  e.  ( 0..^ N )  ->  ( A  e.  RR  /\  N  e.  RR ) )
7 elfzoelz 10103 . . . 4  |-  ( B  e.  ( 0..^ N )  ->  B  e.  ZZ )
87zred 9334 . . 3  |-  ( B  e.  ( 0..^ N )  ->  B  e.  RR )
9 simpr 109 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  B  e.  RR )
10 simpll 524 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  A  e.  RR )
11 resubcl 8183 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  A  e.  RR )  ->  ( N  -  A
)  e.  RR )
1211ancoms 266 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  RR )  ->  ( N  -  A
)  e.  RR )
1312adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( N  -  A )  e.  RR )
149, 10, 13ltadd1d 8457 . . . . . 6  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( B  < 
A  <->  ( B  +  ( N  -  A
) )  <  ( A  +  ( N  -  A ) ) ) )
1514biimpa 294 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( B  +  ( N  -  A ) )  < 
( A  +  ( N  -  A ) ) )
16 recn 7907 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
17 recn 7907 . . . . . . . . 9  |-  ( N  e.  RR  ->  N  e.  CC )
1816, 17anim12i 336 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  RR )  ->  ( A  e.  CC  /\  N  e.  CC ) )
1918adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( A  e.  CC  /\  N  e.  CC ) )
2019adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( A  e.  CC  /\  N  e.  CC ) )
21 pncan3 8127 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( A  +  ( N  -  A ) )  =  N )
2220, 21syl 14 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( A  +  ( N  -  A ) )  =  N )
2315, 22breqtrd 4015 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( B  +  ( N  -  A ) )  < 
N )
2423ex 114 . . 3  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( B  < 
A  ->  ( B  +  ( N  -  A ) )  < 
N ) )
256, 8, 24syl2an 287 . 2  |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N ) )  ->  ( B  <  A  ->  ( B  +  ( N  -  A ) )  < 
N ) )
26253impia 1195 1  |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N )  /\  B  <  A
)  ->  ( B  +  ( N  -  A ) )  < 
N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774    + caddc 7777    < clt 7954    - cmin 8090   NNcn 8878   NN0cn0 9135  ..^cfzo 10098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator