ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzonmapblen Unicode version

Theorem fzonmapblen 10122
Description: The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less then the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.)
Assertion
Ref Expression
fzonmapblen  |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N )  /\  B  <  A
)  ->  ( B  +  ( N  -  A ) )  < 
N )

Proof of Theorem fzonmapblen
StepHypRef Expression
1 elfzo0 10117 . . . 4  |-  ( A  e.  ( 0..^ N )  <->  ( A  e. 
NN0  /\  N  e.  NN  /\  A  <  N
) )
2 nn0re 9123 . . . . . 6  |-  ( A  e.  NN0  ->  A  e.  RR )
3 nnre 8864 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR )
42, 3anim12i 336 . . . . 5  |-  ( ( A  e.  NN0  /\  N  e.  NN )  ->  ( A  e.  RR  /\  N  e.  RR ) )
543adant3 1007 . . . 4  |-  ( ( A  e.  NN0  /\  N  e.  NN  /\  A  <  N )  ->  ( A  e.  RR  /\  N  e.  RR ) )
61, 5sylbi 120 . . 3  |-  ( A  e.  ( 0..^ N )  ->  ( A  e.  RR  /\  N  e.  RR ) )
7 elfzoelz 10082 . . . 4  |-  ( B  e.  ( 0..^ N )  ->  B  e.  ZZ )
87zred 9313 . . 3  |-  ( B  e.  ( 0..^ N )  ->  B  e.  RR )
9 simpr 109 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  B  e.  RR )
10 simpll 519 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  A  e.  RR )
11 resubcl 8162 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  A  e.  RR )  ->  ( N  -  A
)  e.  RR )
1211ancoms 266 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  RR )  ->  ( N  -  A
)  e.  RR )
1312adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( N  -  A )  e.  RR )
149, 10, 13ltadd1d 8436 . . . . . 6  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( B  < 
A  <->  ( B  +  ( N  -  A
) )  <  ( A  +  ( N  -  A ) ) ) )
1514biimpa 294 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( B  +  ( N  -  A ) )  < 
( A  +  ( N  -  A ) ) )
16 recn 7886 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
17 recn 7886 . . . . . . . . 9  |-  ( N  e.  RR  ->  N  e.  CC )
1816, 17anim12i 336 . . . . . . . 8  |-  ( ( A  e.  RR  /\  N  e.  RR )  ->  ( A  e.  CC  /\  N  e.  CC ) )
1918adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( A  e.  CC  /\  N  e.  CC ) )
2019adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( A  e.  CC  /\  N  e.  CC ) )
21 pncan3 8106 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( A  +  ( N  -  A ) )  =  N )
2220, 21syl 14 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( A  +  ( N  -  A ) )  =  N )
2315, 22breqtrd 4008 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  /\  B  <  A )  ->  ( B  +  ( N  -  A ) )  < 
N )
2423ex 114 . . 3  |-  ( ( ( A  e.  RR  /\  N  e.  RR )  /\  B  e.  RR )  ->  ( B  < 
A  ->  ( B  +  ( N  -  A ) )  < 
N ) )
256, 8, 24syl2an 287 . 2  |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N ) )  ->  ( B  <  A  ->  ( B  +  ( N  -  A ) )  < 
N ) )
26253impia 1190 1  |-  ( ( A  e.  ( 0..^ N )  /\  B  e.  ( 0..^ N )  /\  B  <  A
)  ->  ( B  +  ( N  -  A ) )  < 
N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753    + caddc 7756    < clt 7933    - cmin 8069   NNcn 8857   NN0cn0 9114  ..^cfzo 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator