Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzonmapblen | GIF version |
Description: The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less then the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.) |
Ref | Expression |
---|---|
fzonmapblen | ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 10138 | . . . 4 ⊢ (𝐴 ∈ (0..^𝑁) ↔ (𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐴 < 𝑁)) | |
2 | nn0re 9144 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
3 | nnre 8885 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
4 | 2, 3 | anim12i 336 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
5 | 4 | 3adant3 1012 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐴 < 𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
6 | 1, 5 | sylbi 120 | . . 3 ⊢ (𝐴 ∈ (0..^𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
7 | elfzoelz 10103 | . . . 4 ⊢ (𝐵 ∈ (0..^𝑁) → 𝐵 ∈ ℤ) | |
8 | 7 | zred 9334 | . . 3 ⊢ (𝐵 ∈ (0..^𝑁) → 𝐵 ∈ ℝ) |
9 | simpr 109 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
10 | simpll 524 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
11 | resubcl 8183 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁 − 𝐴) ∈ ℝ) | |
12 | 11 | ancoms 266 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁 − 𝐴) ∈ ℝ) |
13 | 12 | adantr 274 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝑁 − 𝐴) ∈ ℝ) |
14 | 9, 10, 13 | ltadd1d 8457 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ (𝐵 + (𝑁 − 𝐴)) < (𝐴 + (𝑁 − 𝐴)))) |
15 | 14 | biimpa 294 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < (𝐴 + (𝑁 − 𝐴))) |
16 | recn 7907 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
17 | recn 7907 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℝ → 𝑁 ∈ ℂ) | |
18 | 16, 17 | anim12i 336 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
19 | 18 | adantr 274 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
20 | 19 | adantr 274 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
21 | pncan3 8127 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 + (𝑁 − 𝐴)) = 𝑁) | |
22 | 20, 21 | syl 14 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴 + (𝑁 − 𝐴)) = 𝑁) |
23 | 15, 22 | breqtrd 4015 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) |
24 | 23 | ex 114 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 + (𝑁 − 𝐴)) < 𝑁)) |
25 | 6, 8, 24 | syl2an 287 | . 2 ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁)) → (𝐵 < 𝐴 → (𝐵 + (𝑁 − 𝐴)) < 𝑁)) |
26 | 25 | 3impia 1195 | 1 ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℂcc 7772 ℝcr 7773 0cc0 7774 + caddc 7777 < clt 7954 − cmin 8090 ℕcn 8878 ℕ0cn0 9135 ..^cfzo 10098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |