| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzss2 | GIF version | ||
| Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzss2 | ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 10225 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 3 | elfzuz3 10226 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝐾) → 𝐾 ∈ (ℤ≥‘𝑘)) | |
| 4 | uztrn 9747 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑘)) → 𝑁 ∈ (ℤ≥‘𝑘)) | |
| 5 | 3, 4 | sylan2 286 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
| 6 | elfzuzb 10223 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) | |
| 7 | 2, 5, 6 | sylanbrc 417 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑘 ∈ (𝑀...𝑁)) |
| 8 | 7 | ex 115 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (𝑀...𝑁))) |
| 9 | 8 | ssrdv 3230 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ⊆ wss 3197 ‘cfv 5318 (class class class)co 6007 ℤ≥cuz 9730 ...cfz 10212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-pre-ltwlin 8120 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-neg 8328 df-z 9455 df-uz 9731 df-fz 10213 |
| This theorem is referenced by: fzssp1 10271 elfz0add 10324 fzoss2 10378 seqsplitg 10719 seqcaopr2g 10724 iseqf1olemnab 10731 seqf1oglem2a 10748 seqf1oglem2 10750 seqhomog 10760 bcm1k 10990 seq3coll 11072 fsum0diaglem 11959 fisum0diag2 11966 mertenslemi1 12054 prodfrecap 12065 pcfac 12881 strleund 13144 strleun 13145 strext 13146 plyaddlem1 15429 plymullem1 15430 plycoeid3 15439 gausslemma2dlem2 15749 lgsquadlem3 15766 wlkres 16098 |
| Copyright terms: Public domain | W3C validator |