ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzss2 GIF version

Theorem fzss2 10268
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
fzss2 (𝑁 ∈ (ℤ𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁))

Proof of Theorem fzss2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzuz 10225 . . . . 5 (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (ℤ𝑀))
21adantl 277 . . . 4 ((𝑁 ∈ (ℤ𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑘 ∈ (ℤ𝑀))
3 elfzuz3 10226 . . . . 5 (𝑘 ∈ (𝑀...𝐾) → 𝐾 ∈ (ℤ𝑘))
4 uztrn 9747 . . . . 5 ((𝑁 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑘)) → 𝑁 ∈ (ℤ𝑘))
53, 4sylan2 286 . . . 4 ((𝑁 ∈ (ℤ𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑁 ∈ (ℤ𝑘))
6 elfzuzb 10223 . . . 4 (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑘)))
72, 5, 6sylanbrc 417 . . 3 ((𝑁 ∈ (ℤ𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑘 ∈ (𝑀...𝑁))
87ex 115 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (𝑀...𝑁)))
98ssrdv 3230 1 (𝑁 ∈ (ℤ𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wss 3197  cfv 5318  (class class class)co 6007  cuz 9730  ...cfz 10212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-pre-ltwlin 8120
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-neg 8328  df-z 9455  df-uz 9731  df-fz 10213
This theorem is referenced by:  fzssp1  10271  elfz0add  10324  fzoss2  10378  seqsplitg  10719  seqcaopr2g  10724  iseqf1olemnab  10731  seqf1oglem2a  10748  seqf1oglem2  10750  seqhomog  10760  bcm1k  10990  seq3coll  11072  fsum0diaglem  11959  fisum0diag2  11966  mertenslemi1  12054  prodfrecap  12065  pcfac  12881  strleund  13144  strleun  13145  strext  13146  plyaddlem1  15429  plymullem1  15430  plycoeid3  15439  gausslemma2dlem2  15749  lgsquadlem3  15766  wlkres  16098
  Copyright terms: Public domain W3C validator