![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzss2 | GIF version |
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
fzss2 | ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 9436 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
2 | 1 | adantl 271 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
3 | elfzuz3 9437 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝐾) → 𝐾 ∈ (ℤ≥‘𝑘)) | |
4 | uztrn 9035 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑘)) → 𝑁 ∈ (ℤ≥‘𝑘)) | |
5 | 3, 4 | sylan2 280 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
6 | elfzuzb 9434 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) | |
7 | 2, 5, 6 | sylanbrc 408 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑘 ∈ (𝑀...𝑁)) |
8 | 7 | ex 113 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (𝑀...𝑁))) |
9 | 8 | ssrdv 3031 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1438 ⊆ wss 2999 ‘cfv 5015 (class class class)co 5652 ℤ≥cuz 9019 ...cfz 9424 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7436 ax-resscn 7437 ax-pre-ltwlin 7458 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-pnf 7524 df-mnf 7525 df-xr 7526 df-ltxr 7527 df-le 7528 df-neg 7656 df-z 8751 df-uz 9020 df-fz 9425 |
This theorem is referenced by: fzssp1 9481 elfz0add 9534 fzoss2 9583 iseqf1olemnab 9917 bcm1k 10168 iseqcoll 10247 fsum0diaglem 10834 fisum0diag2 10841 mertenslemi1 10929 strleund 11581 strleun 11582 |
Copyright terms: Public domain | W3C validator |