| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzss2 | GIF version | ||
| Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzss2 | ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 10156 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 3 | elfzuz3 10157 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝐾) → 𝐾 ∈ (ℤ≥‘𝑘)) | |
| 4 | uztrn 9678 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑘)) → 𝑁 ∈ (ℤ≥‘𝑘)) | |
| 5 | 3, 4 | sylan2 286 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
| 6 | elfzuzb 10154 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) | |
| 7 | 2, 5, 6 | sylanbrc 417 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑘 ∈ (𝑀...𝑁)) |
| 8 | 7 | ex 115 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (𝑀...𝑁))) |
| 9 | 8 | ssrdv 3201 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ⊆ wss 3168 ‘cfv 5277 (class class class)co 5954 ℤ≥cuz 9661 ...cfz 10143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-pre-ltwlin 8051 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-neg 8259 df-z 9386 df-uz 9662 df-fz 10144 |
| This theorem is referenced by: fzssp1 10202 elfz0add 10255 fzoss2 10309 seqsplitg 10647 seqcaopr2g 10652 iseqf1olemnab 10659 seqf1oglem2a 10676 seqf1oglem2 10678 seqhomog 10688 bcm1k 10918 seq3coll 11000 fsum0diaglem 11801 fisum0diag2 11808 mertenslemi1 11896 prodfrecap 11907 pcfac 12723 strleund 12985 strleun 12986 strext 12987 plyaddlem1 15269 plymullem1 15270 plycoeid3 15279 gausslemma2dlem2 15589 lgsquadlem3 15606 |
| Copyright terms: Public domain | W3C validator |