| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzss2 | GIF version | ||
| Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzss2 | ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 10205 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 3 | elfzuz3 10206 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝐾) → 𝐾 ∈ (ℤ≥‘𝑘)) | |
| 4 | uztrn 9727 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑘)) → 𝑁 ∈ (ℤ≥‘𝑘)) | |
| 5 | 3, 4 | sylan2 286 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
| 6 | elfzuzb 10203 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) | |
| 7 | 2, 5, 6 | sylanbrc 417 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘𝐾) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝑘 ∈ (𝑀...𝑁)) |
| 8 | 7 | ex 115 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (𝑀...𝑁))) |
| 9 | 8 | ssrdv 3230 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ⊆ wss 3197 ‘cfv 5314 (class class class)co 5994 ℤ≥cuz 9710 ...cfz 10192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-pre-ltwlin 8100 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-neg 8308 df-z 9435 df-uz 9711 df-fz 10193 |
| This theorem is referenced by: fzssp1 10251 elfz0add 10304 fzoss2 10358 seqsplitg 10698 seqcaopr2g 10703 iseqf1olemnab 10710 seqf1oglem2a 10727 seqf1oglem2 10729 seqhomog 10739 bcm1k 10969 seq3coll 11051 fsum0diaglem 11937 fisum0diag2 11944 mertenslemi1 12032 prodfrecap 12043 pcfac 12859 strleund 13122 strleun 13123 strext 13124 plyaddlem1 15406 plymullem1 15407 plycoeid3 15416 gausslemma2dlem2 15726 lgsquadlem3 15743 |
| Copyright terms: Public domain | W3C validator |