ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmeqker GIF version

Theorem ghmeqker 13578
Description: Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmeqker.b 𝐵 = (Base‘𝑆)
ghmeqker.z 0 = (0g𝑇)
ghmeqker.k 𝐾 = (𝐹 “ { 0 })
ghmeqker.m = (-g𝑆)
Assertion
Ref Expression
ghmeqker ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) = (𝐹𝑉) ↔ (𝑈 𝑉) ∈ 𝐾))

Proof of Theorem ghmeqker
StepHypRef Expression
1 ghmeqker.k . . . . 5 𝐾 = (𝐹 “ { 0 })
2 ghmeqker.z . . . . . . 7 0 = (0g𝑇)
32sneqi 3644 . . . . . 6 { 0 } = {(0g𝑇)}
43imaeq2i 5019 . . . . 5 (𝐹 “ { 0 }) = (𝐹 “ {(0g𝑇)})
51, 4eqtri 2225 . . . 4 𝐾 = (𝐹 “ {(0g𝑇)})
65eleq2i 2271 . . 3 ((𝑈 𝑉) ∈ 𝐾 ↔ (𝑈 𝑉) ∈ (𝐹 “ {(0g𝑇)}))
7 ghmeqker.b . . . . . . 7 𝐵 = (Base‘𝑆)
8 eqid 2204 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
97, 8ghmf 13554 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
109ffnd 5425 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 Fn 𝐵)
11103ad2ant1 1020 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝐹 Fn 𝐵)
12 fniniseg 5699 . . . 4 (𝐹 Fn 𝐵 → ((𝑈 𝑉) ∈ (𝐹 “ {(0g𝑇)}) ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
1311, 12syl 14 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝑈 𝑉) ∈ (𝐹 “ {(0g𝑇)}) ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
146, 13bitrid 192 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝑈 𝑉) ∈ 𝐾 ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
15 ghmgrp1 13552 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
16 ghmeqker.m . . . . . 6 = (-g𝑆)
177, 16grpsubcl 13383 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑈𝐵𝑉𝐵) → (𝑈 𝑉) ∈ 𝐵)
1815, 17syl3an1 1282 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝑈 𝑉) ∈ 𝐵)
1918biantrurd 305 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹‘(𝑈 𝑉)) = (0g𝑇) ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
20 eqid 2204 . . . . 5 (-g𝑇) = (-g𝑇)
217, 16, 20ghmsub 13558 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)(-g𝑇)(𝐹𝑉)))
2221eqeq1d 2213 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹‘(𝑈 𝑉)) = (0g𝑇) ↔ ((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇)))
2319, 22bitr3d 190 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇)) ↔ ((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇)))
24 ghmgrp2 13553 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
25243ad2ant1 1020 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑇 ∈ Grp)
2693ad2ant1 1020 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝐹:𝐵⟶(Base‘𝑇))
27 simp2 1000 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑈𝐵)
2826, 27ffvelcdmd 5715 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹𝑈) ∈ (Base‘𝑇))
29 simp3 1001 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑉𝐵)
3026, 29ffvelcdmd 5715 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹𝑉) ∈ (Base‘𝑇))
31 eqid 2204 . . . 4 (0g𝑇) = (0g𝑇)
328, 31, 20grpsubeq0 13389 . . 3 ((𝑇 ∈ Grp ∧ (𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)) → (((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇) ↔ (𝐹𝑈) = (𝐹𝑉)))
3325, 28, 30, 32syl3anc 1249 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇) ↔ (𝐹𝑈) = (𝐹𝑉)))
3414, 23, 333bitrrd 215 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) = (𝐹𝑉) ↔ (𝑈 𝑉) ∈ 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  {csn 3632  ccnv 4673  cima 4677   Fn wfn 5265  wf 5266  cfv 5270  (class class class)co 5943  Basecbs 12803  0gc0g 13059  Grpcgrp 13303  -gcsg 13305   GrpHom cghm 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-inn 9036  df-2 9094  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-minusg 13307  df-sbg 13308  df-ghm 13548
This theorem is referenced by:  kerf1ghm  13581
  Copyright terms: Public domain W3C validator