ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmeqker GIF version

Theorem ghmeqker 13401
Description: Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmeqker.b 𝐵 = (Base‘𝑆)
ghmeqker.z 0 = (0g𝑇)
ghmeqker.k 𝐾 = (𝐹 “ { 0 })
ghmeqker.m = (-g𝑆)
Assertion
Ref Expression
ghmeqker ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) = (𝐹𝑉) ↔ (𝑈 𝑉) ∈ 𝐾))

Proof of Theorem ghmeqker
StepHypRef Expression
1 ghmeqker.k . . . . 5 𝐾 = (𝐹 “ { 0 })
2 ghmeqker.z . . . . . . 7 0 = (0g𝑇)
32sneqi 3634 . . . . . 6 { 0 } = {(0g𝑇)}
43imaeq2i 5007 . . . . 5 (𝐹 “ { 0 }) = (𝐹 “ {(0g𝑇)})
51, 4eqtri 2217 . . . 4 𝐾 = (𝐹 “ {(0g𝑇)})
65eleq2i 2263 . . 3 ((𝑈 𝑉) ∈ 𝐾 ↔ (𝑈 𝑉) ∈ (𝐹 “ {(0g𝑇)}))
7 ghmeqker.b . . . . . . 7 𝐵 = (Base‘𝑆)
8 eqid 2196 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
97, 8ghmf 13377 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
109ffnd 5408 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 Fn 𝐵)
11103ad2ant1 1020 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝐹 Fn 𝐵)
12 fniniseg 5682 . . . 4 (𝐹 Fn 𝐵 → ((𝑈 𝑉) ∈ (𝐹 “ {(0g𝑇)}) ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
1311, 12syl 14 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝑈 𝑉) ∈ (𝐹 “ {(0g𝑇)}) ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
146, 13bitrid 192 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝑈 𝑉) ∈ 𝐾 ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
15 ghmgrp1 13375 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
16 ghmeqker.m . . . . . 6 = (-g𝑆)
177, 16grpsubcl 13212 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑈𝐵𝑉𝐵) → (𝑈 𝑉) ∈ 𝐵)
1815, 17syl3an1 1282 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝑈 𝑉) ∈ 𝐵)
1918biantrurd 305 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹‘(𝑈 𝑉)) = (0g𝑇) ↔ ((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇))))
20 eqid 2196 . . . . 5 (-g𝑇) = (-g𝑇)
217, 16, 20ghmsub 13381 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)(-g𝑇)(𝐹𝑉)))
2221eqeq1d 2205 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹‘(𝑈 𝑉)) = (0g𝑇) ↔ ((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇)))
2319, 22bitr3d 190 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (((𝑈 𝑉) ∈ 𝐵 ∧ (𝐹‘(𝑈 𝑉)) = (0g𝑇)) ↔ ((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇)))
24 ghmgrp2 13376 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
25243ad2ant1 1020 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑇 ∈ Grp)
2693ad2ant1 1020 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝐹:𝐵⟶(Base‘𝑇))
27 simp2 1000 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑈𝐵)
2826, 27ffvelcdmd 5698 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹𝑈) ∈ (Base‘𝑇))
29 simp3 1001 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑉𝐵)
3026, 29ffvelcdmd 5698 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹𝑉) ∈ (Base‘𝑇))
31 eqid 2196 . . . 4 (0g𝑇) = (0g𝑇)
328, 31, 20grpsubeq0 13218 . . 3 ((𝑇 ∈ Grp ∧ (𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)) → (((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇) ↔ (𝐹𝑈) = (𝐹𝑉)))
3325, 28, 30, 32syl3anc 1249 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (((𝐹𝑈)(-g𝑇)(𝐹𝑉)) = (0g𝑇) ↔ (𝐹𝑈) = (𝐹𝑉)))
3414, 23, 333bitrrd 215 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) = (𝐹𝑉) ↔ (𝑈 𝑉) ∈ 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  {csn 3622  ccnv 4662  cima 4666   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  Basecbs 12678  0gc0g 12927  Grpcgrp 13132  -gcsg 13134   GrpHom cghm 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-ghm 13371
This theorem is referenced by:  kerf1ghm  13404
  Copyright terms: Public domain W3C validator