ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmf GIF version

Theorem ghmf 13501
Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmf.x 𝑋 = (Base‘𝑆)
ghmf.y 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
ghmf (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)

Proof of Theorem ghmf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmf.x . . . 4 𝑋 = (Base‘𝑆)
2 ghmf.y . . . 4 𝑌 = (Base‘𝑇)
3 eqid 2204 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2204 . . . 4 (+g𝑇) = (+g𝑇)
51, 2, 3, 4isghm 13497 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝑋𝑥𝑋 (𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥)))))
65simprbi 275 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝑋𝑥𝑋 (𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥))))
76simpld 112 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wral 2483  wf 5264  cfv 5268  (class class class)co 5934  Basecbs 12751  +gcplusg 12828  Grpcgrp 13250   GrpHom cghm 13494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-inn 9019  df-ndx 12754  df-slot 12755  df-base 12757  df-ghm 13495
This theorem is referenced by:  ghmid  13503  ghminv  13504  ghmsub  13505  ghmmhm  13507  ghmmulg  13510  ghmrn  13511  resghm  13514  ghmpreima  13520  ghmeql  13521  ghmnsgima  13522  ghmnsgpreima  13523  ghmeqker  13525  ghmf1  13527  kerf1ghm  13528  ghmf1o  13529  rhmf  13843  isrhm2d  13845
  Copyright terms: Public domain W3C validator