ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplcan GIF version

Theorem grplcan 13438
Description: Left cancellation law for groups. (Contributed by NM, 25-Aug-2011.)
Hypotheses
Ref Expression
grplcan.b 𝐵 = (Base‘𝐺)
grplcan.p + = (+g𝐺)
Assertion
Ref Expression
grplcan ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem grplcan
StepHypRef Expression
1 oveq2 5959 . . . . . 6 ((𝑍 + 𝑋) = (𝑍 + 𝑌) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
21adantl 277 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
3 grplcan.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
4 grplcan.p . . . . . . . . . . 11 + = (+g𝐺)
5 eqid 2206 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
6 eqid 2206 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
73, 4, 5, 6grplinv 13426 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
87adantlr 477 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
98oveq1d 5966 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = ((0g𝐺) + 𝑋))
103, 6grpinvcl 13424 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
1110adantrl 478 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
12 simprr 531 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → 𝑍𝐵)
13 simprl 529 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → 𝑋𝐵)
1411, 12, 133jca 1180 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵))
153, 4grpass 13385 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑋𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
1614, 15syldan 282 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
1716anassrs 400 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑋) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)))
183, 4, 5grplid 13407 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
1918adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
209, 17, 193eqtr3d 2247 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑍𝐵) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
2120adantrl 478 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
2221adantr 276 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑋)) = 𝑋)
237adantrl 478 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + 𝑍) = (0g𝐺))
2423oveq1d 5966 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = ((0g𝐺) + 𝑌))
2510adantrl 478 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
26 simprr 531 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
27 simprl 529 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
2825, 26, 273jca 1180 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵))
293, 4grpass 13385 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑍) ∈ 𝐵𝑍𝐵𝑌𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
3028, 29syldan 282 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((((invg𝐺)‘𝑍) + 𝑍) + 𝑌) = (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)))
313, 4, 5grplid 13407 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
3231adantrr 479 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → ((0g𝐺) + 𝑌) = 𝑌)
3324, 30, 323eqtr3d 2247 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
3433adantlr 477 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
3534adantr 276 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → (((invg𝐺)‘𝑍) + (𝑍 + 𝑌)) = 𝑌)
362, 22, 353eqtr3d 2247 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑍 + 𝑋) = (𝑍 + 𝑌)) → 𝑋 = 𝑌)
3736exp53 377 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑌𝐵 → (𝑍𝐵 → ((𝑍 + 𝑋) = (𝑍 + 𝑌) → 𝑋 = 𝑌)))))
38373imp2 1225 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) → 𝑋 = 𝑌))
39 oveq2 5959 . 2 (𝑋 = 𝑌 → (𝑍 + 𝑋) = (𝑍 + 𝑌))
4038, 39impbid1 142 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  0gc0g 13132  Grpcgrp 13376  invgcminusg 13377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380
This theorem is referenced by:  grpidrcan  13441  grpinvinv  13443  grplmulf1o  13450  grplactcnv  13478  conjghm  13656  conjnmzb  13660  rnglz  13751  ringcom  13837  ringlz  13849  lmodlcan  14110  lmodfopne  14132
  Copyright terms: Public domain W3C validator