ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2addnq Unicode version

Theorem lt2addnq 7406
Description: Ordering property of addition for positive fractions. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
lt2addnq  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  ->  ( A  +Q  C )  <Q 
( B  +Q  D
) ) )

Proof of Theorem lt2addnq
StepHypRef Expression
1 ltanqg 7402 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
213expa 1203 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  C  e.  Q. )  ->  ( A  <Q  B  <-> 
( C  +Q  A
)  <Q  ( C  +Q  B ) ) )
32adantrr 479 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
4 addcomnqg 7383 . . . . . . 7  |-  ( ( C  e.  Q.  /\  A  e.  Q. )  ->  ( C  +Q  A
)  =  ( A  +Q  C ) )
54ancoms 268 . . . . . 6  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  A
)  =  ( A  +Q  C ) )
65ad2ant2r 509 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  +Q  A )  =  ( A  +Q  C ) )
7 addcomnqg 7383 . . . . . . 7  |-  ( ( C  e.  Q.  /\  B  e.  Q. )  ->  ( C  +Q  B
)  =  ( B  +Q  C ) )
87ancoms 268 . . . . . 6  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  B
)  =  ( B  +Q  C ) )
98ad2ant2lr 510 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  +Q  B )  =  ( B  +Q  C ) )
106, 9breq12d 4018 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( C  +Q  A )  <Q 
( C  +Q  B
)  <->  ( A  +Q  C )  <Q  ( B  +Q  C ) ) )
113, 10bitrd 188 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( A  <Q  B  <->  ( A  +Q  C )  <Q  ( B  +Q  C ) ) )
12 ltanqg 7402 . . . . . 6  |-  ( ( C  e.  Q.  /\  D  e.  Q.  /\  B  e.  Q. )  ->  ( C  <Q  D  <->  ( B  +Q  C )  <Q  ( B  +Q  D ) ) )
13123expa 1203 . . . . 5  |-  ( ( ( C  e.  Q.  /\  D  e.  Q. )  /\  B  e.  Q. )  ->  ( C  <Q  D  <-> 
( B  +Q  C
)  <Q  ( B  +Q  D ) ) )
1413ancoms 268 . . . 4  |-  ( ( B  e.  Q.  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  <Q  D  <->  ( B  +Q  C )  <Q  ( B  +Q  D ) ) )
1514adantll 476 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  <Q  D  <->  ( B  +Q  C )  <Q  ( B  +Q  D ) ) )
1611, 15anbi12d 473 . 2  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  <->  ( ( A  +Q  C )  <Q 
( B  +Q  C
)  /\  ( B  +Q  C )  <Q  ( B  +Q  D ) ) ) )
17 ltsonq 7400 . . 3  |-  <Q  Or  Q.
18 ltrelnq 7367 . . 3  |-  <Q  C_  ( Q.  X.  Q. )
1917, 18sotri 5026 . 2  |-  ( ( ( A  +Q  C
)  <Q  ( B  +Q  C )  /\  ( B  +Q  C )  <Q 
( B  +Q  D
) )  ->  ( A  +Q  C )  <Q 
( B  +Q  D
) )
2016, 19biimtrdi 163 1  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  ->  ( A  +Q  C )  <Q 
( B  +Q  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5878   Q.cnq 7282    +Q cplq 7284    <Q cltq 7287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-oadd 6424  df-omul 6425  df-er 6538  df-ec 6540  df-qs 6544  df-ni 7306  df-pli 7307  df-mi 7308  df-lti 7309  df-plpq 7346  df-enq 7349  df-nqqs 7350  df-plqqs 7351  df-ltnqqs 7355
This theorem is referenced by:  addlocprlemeqgt  7534  addnqprlemrl  7559  addnqprlemru  7560  cauappcvgprlemladdfl  7657  caucvgprlemloc  7677  caucvgprprlemloccalc  7686
  Copyright terms: Public domain W3C validator