Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lt2addnq | Unicode version |
Description: Ordering property of addition for positive fractions. (Contributed by Jim Kingdon, 7-Dec-2019.) |
Ref | Expression |
---|---|
lt2addnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltanqg 7335 | . . . . . 6 | |
2 | 1 | 3expa 1192 | . . . . 5 |
3 | 2 | adantrr 471 | . . . 4 |
4 | addcomnqg 7316 | . . . . . . 7 | |
5 | 4 | ancoms 266 | . . . . . 6 |
6 | 5 | ad2ant2r 501 | . . . . 5 |
7 | addcomnqg 7316 | . . . . . . 7 | |
8 | 7 | ancoms 266 | . . . . . 6 |
9 | 8 | ad2ant2lr 502 | . . . . 5 |
10 | 6, 9 | breq12d 3992 | . . . 4 |
11 | 3, 10 | bitrd 187 | . . 3 |
12 | ltanqg 7335 | . . . . . 6 | |
13 | 12 | 3expa 1192 | . . . . 5 |
14 | 13 | ancoms 266 | . . . 4 |
15 | 14 | adantll 468 | . . 3 |
16 | 11, 15 | anbi12d 465 | . 2 |
17 | ltsonq 7333 | . . 3 | |
18 | ltrelnq 7300 | . . 3 | |
19 | 17, 18 | sotri 4996 | . 2 |
20 | 16, 19 | syl6bi 162 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1342 wcel 2135 class class class wbr 3979 (class class class)co 5839 cnq 7215 cplq 7217 cltq 7220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4094 ax-sep 4097 ax-nul 4105 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 ax-iinf 4562 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2726 df-sbc 2950 df-csb 3044 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-nul 3408 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-int 3822 df-iun 3865 df-br 3980 df-opab 4041 df-mpt 4042 df-tr 4078 df-eprel 4264 df-id 4268 df-po 4271 df-iso 4272 df-iord 4341 df-on 4343 df-suc 4346 df-iom 4565 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-f1 5190 df-fo 5191 df-f1o 5192 df-fv 5193 df-ov 5842 df-oprab 5843 df-mpo 5844 df-1st 6103 df-2nd 6104 df-recs 6267 df-irdg 6332 df-oadd 6382 df-omul 6383 df-er 6495 df-ec 6497 df-qs 6501 df-ni 7239 df-pli 7240 df-mi 7241 df-lti 7242 df-plpq 7279 df-enq 7282 df-nqqs 7283 df-plqqs 7284 df-ltnqqs 7288 |
This theorem is referenced by: addlocprlemeqgt 7467 addnqprlemrl 7492 addnqprlemru 7493 cauappcvgprlemladdfl 7590 caucvgprlemloc 7610 caucvgprprlemloccalc 7619 |
Copyright terms: Public domain | W3C validator |