ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2addnq Unicode version

Theorem lt2addnq 7339
Description: Ordering property of addition for positive fractions. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
lt2addnq  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  ->  ( A  +Q  C )  <Q 
( B  +Q  D
) ) )

Proof of Theorem lt2addnq
StepHypRef Expression
1 ltanqg 7335 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
213expa 1192 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  C  e.  Q. )  ->  ( A  <Q  B  <-> 
( C  +Q  A
)  <Q  ( C  +Q  B ) ) )
32adantrr 471 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
4 addcomnqg 7316 . . . . . . 7  |-  ( ( C  e.  Q.  /\  A  e.  Q. )  ->  ( C  +Q  A
)  =  ( A  +Q  C ) )
54ancoms 266 . . . . . 6  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  A
)  =  ( A  +Q  C ) )
65ad2ant2r 501 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  +Q  A )  =  ( A  +Q  C ) )
7 addcomnqg 7316 . . . . . . 7  |-  ( ( C  e.  Q.  /\  B  e.  Q. )  ->  ( C  +Q  B
)  =  ( B  +Q  C ) )
87ancoms 266 . . . . . 6  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  B
)  =  ( B  +Q  C ) )
98ad2ant2lr 502 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  +Q  B )  =  ( B  +Q  C ) )
106, 9breq12d 3992 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( C  +Q  A )  <Q 
( C  +Q  B
)  <->  ( A  +Q  C )  <Q  ( B  +Q  C ) ) )
113, 10bitrd 187 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( A  <Q  B  <->  ( A  +Q  C )  <Q  ( B  +Q  C ) ) )
12 ltanqg 7335 . . . . . 6  |-  ( ( C  e.  Q.  /\  D  e.  Q.  /\  B  e.  Q. )  ->  ( C  <Q  D  <->  ( B  +Q  C )  <Q  ( B  +Q  D ) ) )
13123expa 1192 . . . . 5  |-  ( ( ( C  e.  Q.  /\  D  e.  Q. )  /\  B  e.  Q. )  ->  ( C  <Q  D  <-> 
( B  +Q  C
)  <Q  ( B  +Q  D ) ) )
1413ancoms 266 . . . 4  |-  ( ( B  e.  Q.  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  <Q  D  <->  ( B  +Q  C )  <Q  ( B  +Q  D ) ) )
1514adantll 468 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( C  <Q  D  <->  ( B  +Q  C )  <Q  ( B  +Q  D ) ) )
1611, 15anbi12d 465 . 2  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  <->  ( ( A  +Q  C )  <Q 
( B  +Q  C
)  /\  ( B  +Q  C )  <Q  ( B  +Q  D ) ) ) )
17 ltsonq 7333 . . 3  |-  <Q  Or  Q.
18 ltrelnq 7300 . . 3  |-  <Q  C_  ( Q.  X.  Q. )
1917, 18sotri 4996 . 2  |-  ( ( ( A  +Q  C
)  <Q  ( B  +Q  C )  /\  ( B  +Q  C )  <Q 
( B  +Q  D
) )  ->  ( A  +Q  C )  <Q 
( B  +Q  D
) )
2016, 19syl6bi 162 1  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( C  e.  Q.  /\  D  e.  Q. )
)  ->  ( ( A  <Q  B  /\  C  <Q  D )  ->  ( A  +Q  C )  <Q 
( B  +Q  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   class class class wbr 3979  (class class class)co 5839   Q.cnq 7215    +Q cplq 7217    <Q cltq 7220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4094  ax-sep 4097  ax-nul 4105  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-iinf 4562
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-iun 3865  df-br 3980  df-opab 4041  df-mpt 4042  df-tr 4078  df-eprel 4264  df-id 4268  df-po 4271  df-iso 4272  df-iord 4341  df-on 4343  df-suc 4346  df-iom 4565  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-f1 5190  df-fo 5191  df-f1o 5192  df-fv 5193  df-ov 5842  df-oprab 5843  df-mpo 5844  df-1st 6103  df-2nd 6104  df-recs 6267  df-irdg 6332  df-oadd 6382  df-omul 6383  df-er 6495  df-ec 6497  df-qs 6501  df-ni 7239  df-pli 7240  df-mi 7241  df-lti 7242  df-plpq 7279  df-enq 7282  df-nqqs 7283  df-plqqs 7284  df-ltnqqs 7288
This theorem is referenced by:  addlocprlemeqgt  7467  addnqprlemrl  7492  addnqprlemru  7493  cauappcvgprlemladdfl  7590  caucvgprlemloc  7610  caucvgprprlemloccalc  7619
  Copyright terms: Public domain W3C validator