ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltletr GIF version

Theorem ltletr 8133
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
ltletr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))

Proof of Theorem ltletr
StepHypRef Expression
1 simprr 531 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → 𝐵𝐶)
2 simpl2 1003 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → 𝐵 ∈ ℝ)
3 simpl3 1004 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → 𝐶 ∈ ℝ)
4 lenlt 8119 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
52, 3, 4syl2anc 411 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
61, 5mpbid 147 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → ¬ 𝐶 < 𝐵)
7 simprl 529 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → 𝐴 < 𝐵)
8 axltwlin 8111 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
98adantr 276 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
107, 9mpd 13 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → (𝐴 < 𝐶𝐶 < 𝐵))
116, 10ecased 1360 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → 𝐴 < 𝐶)
1211ex 115 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980  wcel 2167   class class class wbr 4034  cr 7895   < clt 8078  cle 8079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltwlin 8009
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084
This theorem is referenced by:  ltletri  8150  ltletrd  8467  ltleadd  8490  nngt0  9032  nnrecgt0  9045  elnnnn0c  9311  elnnz1  9366  zltp1le  9397  uz3m2nn  9664  ledivge1le  9818  addlelt  9860  zltaddlt1le  10099  elfz1b  10182  elfzodifsumelfzo  10294  ssfzo12bi  10318  cos01gt0  11945  oddge22np1  12063  nn0seqcvgd  12234  coprm  12337  logdivlti  15201  gausslemma2dlem1a  15383
  Copyright terms: Public domain W3C validator