ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltletr GIF version

Theorem ltletr 7724
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
ltletr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))

Proof of Theorem ltletr
StepHypRef Expression
1 simprr 502 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → 𝐵𝐶)
2 simpl2 953 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → 𝐵 ∈ ℝ)
3 simpl3 954 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → 𝐶 ∈ ℝ)
4 lenlt 7711 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
52, 3, 4syl2anc 406 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
61, 5mpbid 146 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → ¬ 𝐶 < 𝐵)
7 simprl 501 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → 𝐴 < 𝐵)
8 axltwlin 7704 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
98adantr 272 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → (𝐴 < 𝐵 → (𝐴 < 𝐶𝐶 < 𝐵)))
107, 9mpd 13 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → (𝐴 < 𝐶𝐶 < 𝐵))
116, 10ecased 1295 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵𝐵𝐶)) → 𝐴 < 𝐶)
1211ex 114 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 670  w3a 930  wcel 1448   class class class wbr 3875  cr 7499   < clt 7672  cle 7673
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-pre-ltwlin 7608
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-xp 4483  df-cnv 4485  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678
This theorem is referenced by:  ltletri  7741  ltletrd  8052  ltleadd  8075  nngt0  8603  nnrecgt0  8616  elnnnn0c  8874  elnnz1  8929  zltp1le  8960  uz3m2nn  9218  ledivge1le  9360  addlelt  9396  zltaddlt1le  9630  elfz1b  9711  elfzodifsumelfzo  9819  ssfzo12bi  9843  cos01gt0  11267  oddge22np1  11373  nn0seqcvgd  11515  coprm  11615
  Copyright terms: Public domain W3C validator