Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltletr | GIF version |
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.) |
Ref | Expression |
---|---|
ltletr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 531 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → 𝐵 ≤ 𝐶) | |
2 | simpl2 1001 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → 𝐵 ∈ ℝ) | |
3 | simpl3 1002 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → 𝐶 ∈ ℝ) | |
4 | lenlt 8007 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) | |
5 | 2, 3, 4 | syl2anc 411 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → (𝐵 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐵)) |
6 | 1, 5 | mpbid 147 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → ¬ 𝐶 < 𝐵) |
7 | simprl 529 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → 𝐴 < 𝐵) | |
8 | axltwlin 7999 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵))) | |
9 | 8 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → (𝐴 < 𝐵 → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵))) |
10 | 7, 9 | mpd 13 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → (𝐴 < 𝐶 ∨ 𝐶 < 𝐵)) |
11 | 6, 10 | ecased 1349 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → 𝐴 < 𝐶) |
12 | 11 | ex 115 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 ∧ w3a 978 ∈ wcel 2146 class class class wbr 3998 ℝcr 7785 < clt 7966 ≤ cle 7967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-ltwlin 7899 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 |
This theorem is referenced by: ltletri 8038 ltletrd 8354 ltleadd 8377 nngt0 8917 nnrecgt0 8930 elnnnn0c 9194 elnnz1 9249 zltp1le 9280 uz3m2nn 9546 ledivge1le 9697 addlelt 9739 zltaddlt1le 9978 elfz1b 10060 elfzodifsumelfzo 10171 ssfzo12bi 10195 cos01gt0 11738 oddge22np1 11853 nn0seqcvgd 12008 coprm 12111 logdivlti 13873 |
Copyright terms: Public domain | W3C validator |