| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttrd | Unicode version | ||
| Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltd.1 |
|
| ltd.2 |
|
| letrd.3 |
|
| lttrd.4 |
|
| lttrd.5 |
|
| Ref | Expression |
|---|---|
| lttrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttrd.4 |
. 2
| |
| 2 | lttrd.5 |
. 2
| |
| 3 | ltd.1 |
. . 3
| |
| 4 | ltd.2 |
. . 3
| |
| 5 | letrd.3 |
. . 3
| |
| 6 | lttr 8181 |
. . 3
| |
| 7 | 3, 4, 5, 6 | syl3anc 1250 |
. 2
|
| 8 | 1, 2, 7 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-lttrn 8074 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-pnf 8144 df-mnf 8145 df-ltxr 8147 |
| This theorem is referenced by: exbtwnzlemex 10429 rebtwn2z 10434 qbtwnrelemcalc 10435 expgt1 10759 ltexp2a 10773 expnlbnd2 10847 nn0ltexp2 10891 expcanlem 10897 expcan 10898 cvg1nlemcxze 11408 cvg1nlemcau 11410 cvg1nlemres 11411 recvguniqlem 11420 resqrexlemdecn 11438 resqrexlemcvg 11445 resqrexlemga 11449 qdenre 11628 reccn2ap 11739 georeclim 11939 geoisumr 11944 cvgratz 11958 efcllemp 12084 efgt1 12123 cos12dec 12194 dvdslelemd 12269 pythagtriplem13 12714 fldivp1 12786 4sqlem12 12840 nninfdclemlt 12937 ivthinclemlr 15224 ivthinclemur 15226 hovera 15234 ivthdichlem 15238 limcimolemlt 15251 reeff1olem 15358 sin0pilem1 15368 pilem3 15370 coseq0negpitopi 15423 tangtx 15425 cos02pilt1 15438 rplogcl 15466 cxplt 15503 cxple 15504 ltexp2 15528 mersenne 15584 lgsquadlem2 15670 cvgcmp2nlemabs 16173 trilpolemlt1 16182 apdifflemf 16187 |
| Copyright terms: Public domain | W3C validator |