| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttrd | Unicode version | ||
| Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltd.1 |
|
| ltd.2 |
|
| letrd.3 |
|
| lttrd.4 |
|
| lttrd.5 |
|
| Ref | Expression |
|---|---|
| lttrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttrd.4 |
. 2
| |
| 2 | lttrd.5 |
. 2
| |
| 3 | ltd.1 |
. . 3
| |
| 4 | ltd.2 |
. . 3
| |
| 5 | letrd.3 |
. . 3
| |
| 6 | lttr 8117 |
. . 3
| |
| 7 | 3, 4, 5, 6 | syl3anc 1249 |
. 2
|
| 8 | 1, 2, 7 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-lttrn 8010 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8080 df-mnf 8081 df-ltxr 8083 |
| This theorem is referenced by: exbtwnzlemex 10356 rebtwn2z 10361 qbtwnrelemcalc 10362 expgt1 10686 ltexp2a 10700 expnlbnd2 10774 nn0ltexp2 10818 expcanlem 10824 expcan 10825 cvg1nlemcxze 11164 cvg1nlemcau 11166 cvg1nlemres 11167 recvguniqlem 11176 resqrexlemdecn 11194 resqrexlemcvg 11201 resqrexlemga 11205 qdenre 11384 reccn2ap 11495 georeclim 11695 geoisumr 11700 cvgratz 11714 efcllemp 11840 efgt1 11879 cos12dec 11950 dvdslelemd 12025 pythagtriplem13 12470 fldivp1 12542 4sqlem12 12596 nninfdclemlt 12693 ivthinclemlr 14957 ivthinclemur 14959 hovera 14967 ivthdichlem 14971 limcimolemlt 14984 reeff1olem 15091 sin0pilem1 15101 pilem3 15103 coseq0negpitopi 15156 tangtx 15158 cos02pilt1 15171 rplogcl 15199 cxplt 15236 cxple 15237 ltexp2 15261 mersenne 15317 lgsquadlem2 15403 cvgcmp2nlemabs 15763 trilpolemlt1 15772 apdifflemf 15777 |
| Copyright terms: Public domain | W3C validator |