ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttrd Unicode version

Theorem lttrd 8114
Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
letrd.3  |-  ( ph  ->  C  e.  RR )
lttrd.4  |-  ( ph  ->  A  <  B )
lttrd.5  |-  ( ph  ->  B  <  C )
Assertion
Ref Expression
lttrd  |-  ( ph  ->  A  <  C )

Proof of Theorem lttrd
StepHypRef Expression
1 lttrd.4 . 2  |-  ( ph  ->  A  <  B )
2 lttrd.5 . 2  |-  ( ph  ->  B  <  C )
3 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
4 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
5 letrd.3 . . 3  |-  ( ph  ->  C  e.  RR )
6 lttr 8062 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
73, 4, 5, 6syl3anc 1249 . 2  |-  ( ph  ->  ( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
81, 2, 7mp2and 433 1  |-  ( ph  ->  A  <  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160   class class class wbr 4018   RRcr 7841    < clt 8023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-pre-lttrn 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4650  df-pnf 8025  df-mnf 8026  df-ltxr 8028
This theorem is referenced by:  exbtwnzlemex  10282  rebtwn2z  10287  qbtwnrelemcalc  10288  expgt1  10592  ltexp2a  10606  expnlbnd2  10680  nn0ltexp2  10724  expcanlem  10730  expcan  10731  cvg1nlemcxze  11026  cvg1nlemcau  11028  cvg1nlemres  11029  recvguniqlem  11038  resqrexlemdecn  11056  resqrexlemcvg  11063  resqrexlemga  11067  qdenre  11246  reccn2ap  11356  georeclim  11556  geoisumr  11561  cvgratz  11575  efcllemp  11701  efgt1  11740  cos12dec  11810  dvdslelemd  11884  pythagtriplem13  12311  fldivp1  12383  4sqlem12  12437  nninfdclemlt  12505  ivthinclemlr  14592  ivthinclemur  14594  limcimolemlt  14610  reeff1olem  14669  sin0pilem1  14679  pilem3  14681  coseq0negpitopi  14734  tangtx  14736  cos02pilt1  14749  rplogcl  14777  cxplt  14813  cxple  14814  ltexp2  14837  cvgcmp2nlemabs  15259  trilpolemlt1  15268  apdifflemf  15273
  Copyright terms: Public domain W3C validator