Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lttrd | Unicode version |
Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
Ref | Expression |
---|---|
ltd.1 | |
ltd.2 | |
letrd.3 | |
lttrd.4 | |
lttrd.5 |
Ref | Expression |
---|---|
lttrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttrd.4 | . 2 | |
2 | lttrd.5 | . 2 | |
3 | ltd.1 | . . 3 | |
4 | ltd.2 | . . 3 | |
5 | letrd.3 | . . 3 | |
6 | lttr 8005 | . . 3 | |
7 | 3, 4, 5, 6 | syl3anc 1238 | . 2 |
8 | 1, 2, 7 | mp2and 433 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wcel 2146 class class class wbr 3998 cr 7785 clt 7966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-lttrn 7900 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-pnf 7968 df-mnf 7969 df-ltxr 7971 |
This theorem is referenced by: exbtwnzlemex 10220 rebtwn2z 10225 qbtwnrelemcalc 10226 expgt1 10528 ltexp2a 10542 expnlbnd2 10615 nn0ltexp2 10658 expcanlem 10663 expcan 10664 cvg1nlemcxze 10959 cvg1nlemcau 10961 cvg1nlemres 10962 recvguniqlem 10971 resqrexlemdecn 10989 resqrexlemcvg 10996 resqrexlemga 11000 qdenre 11179 reccn2ap 11289 georeclim 11489 geoisumr 11494 cvgratz 11508 efcllemp 11634 efgt1 11673 cos12dec 11743 dvdslelemd 11816 pythagtriplem13 12243 fldivp1 12313 nninfdclemlt 12419 ivthinclemlr 13686 ivthinclemur 13688 limcimolemlt 13704 reeff1olem 13763 sin0pilem1 13773 pilem3 13775 coseq0negpitopi 13828 tangtx 13830 cos02pilt1 13843 rplogcl 13871 cxplt 13907 cxple 13908 ltexp2 13931 cvgcmp2nlemabs 14341 trilpolemlt1 14350 apdifflemf 14355 |
Copyright terms: Public domain | W3C validator |