ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttrd Unicode version

Theorem lttrd 8200
Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
letrd.3  |-  ( ph  ->  C  e.  RR )
lttrd.4  |-  ( ph  ->  A  <  B )
lttrd.5  |-  ( ph  ->  B  <  C )
Assertion
Ref Expression
lttrd  |-  ( ph  ->  A  <  C )

Proof of Theorem lttrd
StepHypRef Expression
1 lttrd.4 . 2  |-  ( ph  ->  A  <  B )
2 lttrd.5 . 2  |-  ( ph  ->  B  <  C )
3 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
4 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
5 letrd.3 . . 3  |-  ( ph  ->  C  e.  RR )
6 lttr 8148 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <  C )  ->  A  <  C
) )
73, 4, 5, 6syl3anc 1250 . 2  |-  ( ph  ->  ( ( A  < 
B  /\  B  <  C )  ->  A  <  C ) )
81, 2, 7mp2and 433 1  |-  ( ph  ->  A  <  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   class class class wbr 4045   RRcr 7926    < clt 8109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-pre-lttrn 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-pnf 8111  df-mnf 8112  df-ltxr 8114
This theorem is referenced by:  exbtwnzlemex  10394  rebtwn2z  10399  qbtwnrelemcalc  10400  expgt1  10724  ltexp2a  10738  expnlbnd2  10812  nn0ltexp2  10856  expcanlem  10862  expcan  10863  cvg1nlemcxze  11326  cvg1nlemcau  11328  cvg1nlemres  11329  recvguniqlem  11338  resqrexlemdecn  11356  resqrexlemcvg  11363  resqrexlemga  11367  qdenre  11546  reccn2ap  11657  georeclim  11857  geoisumr  11862  cvgratz  11876  efcllemp  12002  efgt1  12041  cos12dec  12112  dvdslelemd  12187  pythagtriplem13  12632  fldivp1  12704  4sqlem12  12758  nninfdclemlt  12855  ivthinclemlr  15142  ivthinclemur  15144  hovera  15152  ivthdichlem  15156  limcimolemlt  15169  reeff1olem  15276  sin0pilem1  15286  pilem3  15288  coseq0negpitopi  15341  tangtx  15343  cos02pilt1  15356  rplogcl  15384  cxplt  15421  cxple  15422  ltexp2  15446  mersenne  15502  lgsquadlem2  15588  cvgcmp2nlemabs  16008  trilpolemlt1  16017  apdifflemf  16022
  Copyright terms: Public domain W3C validator