| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lttrd | Unicode version | ||
| Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| ltd.1 | 
 | 
| ltd.2 | 
 | 
| letrd.3 | 
 | 
| lttrd.4 | 
 | 
| lttrd.5 | 
 | 
| Ref | Expression | 
|---|---|
| lttrd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lttrd.4 | 
. 2
 | |
| 2 | lttrd.5 | 
. 2
 | |
| 3 | ltd.1 | 
. . 3
 | |
| 4 | ltd.2 | 
. . 3
 | |
| 5 | letrd.3 | 
. . 3
 | |
| 6 | lttr 8100 | 
. . 3
 | |
| 7 | 3, 4, 5, 6 | syl3anc 1249 | 
. 2
 | 
| 8 | 1, 2, 7 | mp2and 433 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-lttrn 7993 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-ltxr 8066 | 
| This theorem is referenced by: exbtwnzlemex 10339 rebtwn2z 10344 qbtwnrelemcalc 10345 expgt1 10669 ltexp2a 10683 expnlbnd2 10757 nn0ltexp2 10801 expcanlem 10807 expcan 10808 cvg1nlemcxze 11147 cvg1nlemcau 11149 cvg1nlemres 11150 recvguniqlem 11159 resqrexlemdecn 11177 resqrexlemcvg 11184 resqrexlemga 11188 qdenre 11367 reccn2ap 11478 georeclim 11678 geoisumr 11683 cvgratz 11697 efcllemp 11823 efgt1 11862 cos12dec 11933 dvdslelemd 12008 pythagtriplem13 12445 fldivp1 12517 4sqlem12 12571 nninfdclemlt 12668 ivthinclemlr 14873 ivthinclemur 14875 hovera 14883 ivthdichlem 14887 limcimolemlt 14900 reeff1olem 15007 sin0pilem1 15017 pilem3 15019 coseq0negpitopi 15072 tangtx 15074 cos02pilt1 15087 rplogcl 15115 cxplt 15152 cxple 15153 ltexp2 15177 mersenne 15233 lgsquadlem2 15319 cvgcmp2nlemabs 15676 trilpolemlt1 15685 apdifflemf 15690 | 
| Copyright terms: Public domain | W3C validator |