![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lttrd | Unicode version |
Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
Ref | Expression |
---|---|
ltd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
letrd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lttrd.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lttrd.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
lttrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttrd.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | lttrd.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ltd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | ltd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | letrd.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | lttr 8062 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 3, 4, 5, 6 | syl3anc 1249 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 2, 7 | mp2and 433 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-pre-lttrn 7956 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-xp 4650 df-pnf 8025 df-mnf 8026 df-ltxr 8028 |
This theorem is referenced by: exbtwnzlemex 10282 rebtwn2z 10287 qbtwnrelemcalc 10288 expgt1 10592 ltexp2a 10606 expnlbnd2 10680 nn0ltexp2 10724 expcanlem 10730 expcan 10731 cvg1nlemcxze 11026 cvg1nlemcau 11028 cvg1nlemres 11029 recvguniqlem 11038 resqrexlemdecn 11056 resqrexlemcvg 11063 resqrexlemga 11067 qdenre 11246 reccn2ap 11356 georeclim 11556 geoisumr 11561 cvgratz 11575 efcllemp 11701 efgt1 11740 cos12dec 11810 dvdslelemd 11884 pythagtriplem13 12311 fldivp1 12383 4sqlem12 12437 nninfdclemlt 12505 ivthinclemlr 14592 ivthinclemur 14594 limcimolemlt 14610 reeff1olem 14669 sin0pilem1 14679 pilem3 14681 coseq0negpitopi 14734 tangtx 14736 cos02pilt1 14749 rplogcl 14777 cxplt 14813 cxple 14814 ltexp2 14837 cvgcmp2nlemabs 15259 trilpolemlt1 15268 apdifflemf 15273 |
Copyright terms: Public domain | W3C validator |