| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttrd | Unicode version | ||
| Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltd.1 |
|
| ltd.2 |
|
| letrd.3 |
|
| lttrd.4 |
|
| lttrd.5 |
|
| Ref | Expression |
|---|---|
| lttrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttrd.4 |
. 2
| |
| 2 | lttrd.5 |
. 2
| |
| 3 | ltd.1 |
. . 3
| |
| 4 | ltd.2 |
. . 3
| |
| 5 | letrd.3 |
. . 3
| |
| 6 | lttr 8148 |
. . 3
| |
| 7 | 3, 4, 5, 6 | syl3anc 1250 |
. 2
|
| 8 | 1, 2, 7 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-lttrn 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-pnf 8111 df-mnf 8112 df-ltxr 8114 |
| This theorem is referenced by: exbtwnzlemex 10394 rebtwn2z 10399 qbtwnrelemcalc 10400 expgt1 10724 ltexp2a 10738 expnlbnd2 10812 nn0ltexp2 10856 expcanlem 10862 expcan 10863 cvg1nlemcxze 11326 cvg1nlemcau 11328 cvg1nlemres 11329 recvguniqlem 11338 resqrexlemdecn 11356 resqrexlemcvg 11363 resqrexlemga 11367 qdenre 11546 reccn2ap 11657 georeclim 11857 geoisumr 11862 cvgratz 11876 efcllemp 12002 efgt1 12041 cos12dec 12112 dvdslelemd 12187 pythagtriplem13 12632 fldivp1 12704 4sqlem12 12758 nninfdclemlt 12855 ivthinclemlr 15142 ivthinclemur 15144 hovera 15152 ivthdichlem 15156 limcimolemlt 15169 reeff1olem 15276 sin0pilem1 15286 pilem3 15288 coseq0negpitopi 15341 tangtx 15343 cos02pilt1 15356 rplogcl 15384 cxplt 15421 cxple 15422 ltexp2 15446 mersenne 15502 lgsquadlem2 15588 cvgcmp2nlemabs 16008 trilpolemlt1 16017 apdifflemf 16022 |
| Copyright terms: Public domain | W3C validator |