| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttrd | Unicode version | ||
| Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltd.1 |
|
| ltd.2 |
|
| letrd.3 |
|
| lttrd.4 |
|
| lttrd.5 |
|
| Ref | Expression |
|---|---|
| lttrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttrd.4 |
. 2
| |
| 2 | lttrd.5 |
. 2
| |
| 3 | ltd.1 |
. . 3
| |
| 4 | ltd.2 |
. . 3
| |
| 5 | letrd.3 |
. . 3
| |
| 6 | lttr 8220 |
. . 3
| |
| 7 | 3, 4, 5, 6 | syl3anc 1271 |
. 2
|
| 8 | 1, 2, 7 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-lttrn 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8183 df-mnf 8184 df-ltxr 8186 |
| This theorem is referenced by: exbtwnzlemex 10469 rebtwn2z 10474 qbtwnrelemcalc 10475 expgt1 10799 ltexp2a 10813 expnlbnd2 10887 nn0ltexp2 10931 expcanlem 10937 expcan 10938 cvg1nlemcxze 11493 cvg1nlemcau 11495 cvg1nlemres 11496 recvguniqlem 11505 resqrexlemdecn 11523 resqrexlemcvg 11530 resqrexlemga 11534 qdenre 11713 reccn2ap 11824 georeclim 12024 geoisumr 12029 cvgratz 12043 efcllemp 12169 efgt1 12208 cos12dec 12279 dvdslelemd 12354 pythagtriplem13 12799 fldivp1 12871 4sqlem12 12925 nninfdclemlt 13022 ivthinclemlr 15311 ivthinclemur 15313 hovera 15321 ivthdichlem 15325 limcimolemlt 15338 reeff1olem 15445 sin0pilem1 15455 pilem3 15457 coseq0negpitopi 15510 tangtx 15512 cos02pilt1 15525 rplogcl 15553 cxplt 15590 cxple 15591 ltexp2 15615 mersenne 15671 lgsquadlem2 15757 cvgcmp2nlemabs 16400 trilpolemlt1 16409 apdifflemf 16414 |
| Copyright terms: Public domain | W3C validator |