![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgptopng | GIF version |
Description: Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
mgpbas.1 | โข ๐ = (mulGrpโ๐ ) |
mgptopn.2 | โข ๐ฝ = (TopOpenโ๐ ) |
Ref | Expression |
---|---|
mgptopng | โข (๐ โ ๐ โ ๐ฝ = (TopOpenโ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgptopn.2 | . . 3 โข ๐ฝ = (TopOpenโ๐ ) | |
2 | eqid 2177 | . . . . 5 โข (Baseโ๐ ) = (Baseโ๐ ) | |
3 | eqid 2177 | . . . . 5 โข (TopSetโ๐ ) = (TopSetโ๐ ) | |
4 | 2, 3 | topnvalg 12699 | . . . 4 โข (๐ โ ๐ โ ((TopSetโ๐ ) โพt (Baseโ๐ )) = (TopOpenโ๐ )) |
5 | mgpbas.1 | . . . . . 6 โข ๐ = (mulGrpโ๐ ) | |
6 | 5 | mgptsetg 13136 | . . . . 5 โข (๐ โ ๐ โ (TopSetโ๐ ) = (TopSetโ๐)) |
7 | 5, 2 | mgpbasg 13134 | . . . . 5 โข (๐ โ ๐ โ (Baseโ๐ ) = (Baseโ๐)) |
8 | 6, 7 | oveq12d 5892 | . . . 4 โข (๐ โ ๐ โ ((TopSetโ๐ ) โพt (Baseโ๐ )) = ((TopSetโ๐) โพt (Baseโ๐))) |
9 | 4, 8 | eqtr3d 2212 | . . 3 โข (๐ โ ๐ โ (TopOpenโ๐ ) = ((TopSetโ๐) โพt (Baseโ๐))) |
10 | 1, 9 | eqtrid 2222 | . 2 โข (๐ โ ๐ โ ๐ฝ = ((TopSetโ๐) โพt (Baseโ๐))) |
11 | fnmgp 13130 | . . . . 5 โข mulGrp Fn V | |
12 | elex 2748 | . . . . 5 โข (๐ โ ๐ โ ๐ โ V) | |
13 | funfvex 5532 | . . . . . 6 โข ((Fun mulGrp โง ๐ โ dom mulGrp) โ (mulGrpโ๐ ) โ V) | |
14 | 13 | funfni 5316 | . . . . 5 โข ((mulGrp Fn V โง ๐ โ V) โ (mulGrpโ๐ ) โ V) |
15 | 11, 12, 14 | sylancr 414 | . . . 4 โข (๐ โ ๐ โ (mulGrpโ๐ ) โ V) |
16 | 5, 15 | eqeltrid 2264 | . . 3 โข (๐ โ ๐ โ ๐ โ V) |
17 | eqid 2177 | . . . 4 โข (Baseโ๐) = (Baseโ๐) | |
18 | eqid 2177 | . . . 4 โข (TopSetโ๐) = (TopSetโ๐) | |
19 | 17, 18 | topnvalg 12699 | . . 3 โข (๐ โ V โ ((TopSetโ๐) โพt (Baseโ๐)) = (TopOpenโ๐)) |
20 | 16, 19 | syl 14 | . 2 โข (๐ โ ๐ โ ((TopSetโ๐) โพt (Baseโ๐)) = (TopOpenโ๐)) |
21 | 10, 20 | eqtrd 2210 | 1 โข (๐ โ ๐ โ ๐ฝ = (TopOpenโ๐)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 = wceq 1353 โ wcel 2148 Vcvv 2737 Fn wfn 5211 โcfv 5216 (class class class)co 5874 Basecbs 12461 TopSetcts 12541 โพt crest 12687 TopOpenctopn 12688 mulGrpcmgp 13128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-i2m1 7915 ax-0lt1 7916 ax-0id 7918 ax-rnegex 7919 ax-pre-ltirr 7922 ax-pre-lttrn 7924 ax-pre-ltadd 7926 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-pnf 7993 df-mnf 7994 df-ltxr 7996 df-inn 8919 df-2 8977 df-3 8978 df-4 8979 df-5 8980 df-6 8981 df-7 8982 df-8 8983 df-9 8984 df-ndx 12464 df-slot 12465 df-base 12467 df-sets 12468 df-plusg 12548 df-mulr 12549 df-tset 12554 df-rest 12689 df-topn 12690 df-mgp 13129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |