![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgptopng | GIF version |
Description: Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
mgpbas.1 | โข ๐ = (mulGrpโ๐ ) |
mgptopn.2 | โข ๐ฝ = (TopOpenโ๐ ) |
Ref | Expression |
---|---|
mgptopng | โข (๐ โ ๐ โ ๐ฝ = (TopOpenโ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgptopn.2 | . . 3 โข ๐ฝ = (TopOpenโ๐ ) | |
2 | eqid 2187 | . . . . 5 โข (Baseโ๐ ) = (Baseโ๐ ) | |
3 | eqid 2187 | . . . . 5 โข (TopSetโ๐ ) = (TopSetโ๐ ) | |
4 | 2, 3 | topnvalg 12717 | . . . 4 โข (๐ โ ๐ โ ((TopSetโ๐ ) โพt (Baseโ๐ )) = (TopOpenโ๐ )) |
5 | mgpbas.1 | . . . . . 6 โข ๐ = (mulGrpโ๐ ) | |
6 | 5 | mgptsetg 13170 | . . . . 5 โข (๐ โ ๐ โ (TopSetโ๐ ) = (TopSetโ๐)) |
7 | 5, 2 | mgpbasg 13168 | . . . . 5 โข (๐ โ ๐ โ (Baseโ๐ ) = (Baseโ๐)) |
8 | 6, 7 | oveq12d 5906 | . . . 4 โข (๐ โ ๐ โ ((TopSetโ๐ ) โพt (Baseโ๐ )) = ((TopSetโ๐) โพt (Baseโ๐))) |
9 | 4, 8 | eqtr3d 2222 | . . 3 โข (๐ โ ๐ โ (TopOpenโ๐ ) = ((TopSetโ๐) โพt (Baseโ๐))) |
10 | 1, 9 | eqtrid 2232 | . 2 โข (๐ โ ๐ โ ๐ฝ = ((TopSetโ๐) โพt (Baseโ๐))) |
11 | fnmgp 13164 | . . . . 5 โข mulGrp Fn V | |
12 | elex 2760 | . . . . 5 โข (๐ โ ๐ โ ๐ โ V) | |
13 | funfvex 5544 | . . . . . 6 โข ((Fun mulGrp โง ๐ โ dom mulGrp) โ (mulGrpโ๐ ) โ V) | |
14 | 13 | funfni 5328 | . . . . 5 โข ((mulGrp Fn V โง ๐ โ V) โ (mulGrpโ๐ ) โ V) |
15 | 11, 12, 14 | sylancr 414 | . . . 4 โข (๐ โ ๐ โ (mulGrpโ๐ ) โ V) |
16 | 5, 15 | eqeltrid 2274 | . . 3 โข (๐ โ ๐ โ ๐ โ V) |
17 | eqid 2187 | . . . 4 โข (Baseโ๐) = (Baseโ๐) | |
18 | eqid 2187 | . . . 4 โข (TopSetโ๐) = (TopSetโ๐) | |
19 | 17, 18 | topnvalg 12717 | . . 3 โข (๐ โ V โ ((TopSetโ๐) โพt (Baseโ๐)) = (TopOpenโ๐)) |
20 | 16, 19 | syl 14 | . 2 โข (๐ โ ๐ โ ((TopSetโ๐) โพt (Baseโ๐)) = (TopOpenโ๐)) |
21 | 10, 20 | eqtrd 2220 | 1 โข (๐ โ ๐ โ ๐ฝ = (TopOpenโ๐)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 = wceq 1363 โ wcel 2158 Vcvv 2749 Fn wfn 5223 โcfv 5228 (class class class)co 5888 Basecbs 12475 TopSetcts 12556 โพt crest 12705 TopOpenctopn 12706 mulGrpcmgp 13162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-i2m1 7929 ax-0lt1 7930 ax-0id 7932 ax-rnegex 7933 ax-pre-ltirr 7936 ax-pre-lttrn 7938 ax-pre-ltadd 7940 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-pnf 8007 df-mnf 8008 df-ltxr 8010 df-inn 8933 df-2 8991 df-3 8992 df-4 8993 df-5 8994 df-6 8995 df-7 8996 df-8 8997 df-9 8998 df-ndx 12478 df-slot 12479 df-base 12481 df-sets 12482 df-plusg 12563 df-mulr 12564 df-tset 12569 df-rest 12707 df-topn 12708 df-mgp 13163 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |