![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgptopng | GIF version |
Description: Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgptopn.2 | ⊢ 𝐽 = (TopOpen‘𝑅) |
Ref | Expression |
---|---|
mgptopng | ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopOpen‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgptopn.2 | . . 3 ⊢ 𝐽 = (TopOpen‘𝑅) | |
2 | eqid 2193 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2193 | . . . . 5 ⊢ (TopSet‘𝑅) = (TopSet‘𝑅) | |
4 | 2, 3 | topnvalg 12862 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((TopSet‘𝑅) ↾t (Base‘𝑅)) = (TopOpen‘𝑅)) |
5 | mgpbas.1 | . . . . . 6 ⊢ 𝑀 = (mulGrp‘𝑅) | |
6 | 5 | mgptsetg 13424 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑅) = (TopSet‘𝑀)) |
7 | 5, 2 | mgpbasg 13422 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑀)) |
8 | 6, 7 | oveq12d 5936 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((TopSet‘𝑅) ↾t (Base‘𝑅)) = ((TopSet‘𝑀) ↾t (Base‘𝑀))) |
9 | 4, 8 | eqtr3d 2228 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (TopOpen‘𝑅) = ((TopSet‘𝑀) ↾t (Base‘𝑀))) |
10 | 1, 9 | eqtrid 2238 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝐽 = ((TopSet‘𝑀) ↾t (Base‘𝑀))) |
11 | fnmgp 13418 | . . . . 5 ⊢ mulGrp Fn V | |
12 | elex 2771 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
13 | funfvex 5571 | . . . . . 6 ⊢ ((Fun mulGrp ∧ 𝑅 ∈ dom mulGrp) → (mulGrp‘𝑅) ∈ V) | |
14 | 13 | funfni 5354 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp‘𝑅) ∈ V) |
15 | 11, 12, 14 | sylancr 414 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (mulGrp‘𝑅) ∈ V) |
16 | 5, 15 | eqeltrid 2280 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑀 ∈ V) |
17 | eqid 2193 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
18 | eqid 2193 | . . . 4 ⊢ (TopSet‘𝑀) = (TopSet‘𝑀) | |
19 | 17, 18 | topnvalg 12862 | . . 3 ⊢ (𝑀 ∈ V → ((TopSet‘𝑀) ↾t (Base‘𝑀)) = (TopOpen‘𝑀)) |
20 | 16, 19 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((TopSet‘𝑀) ↾t (Base‘𝑀)) = (TopOpen‘𝑀)) |
21 | 10, 20 | eqtrd 2226 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopOpen‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 Fn wfn 5249 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 TopSetcts 12701 ↾t crest 12850 TopOpenctopn 12851 mulGrpcmgp 13416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-tset 12714 df-rest 12852 df-topn 12853 df-mgp 13417 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |