| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgptopng | GIF version | ||
| Description: Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgptopn.2 | ⊢ 𝐽 = (TopOpen‘𝑅) |
| Ref | Expression |
|---|---|
| mgptopng | ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopOpen‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgptopn.2 | . . 3 ⊢ 𝐽 = (TopOpen‘𝑅) | |
| 2 | eqid 2204 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2204 | . . . . 5 ⊢ (TopSet‘𝑅) = (TopSet‘𝑅) | |
| 4 | 2, 3 | topnvalg 13025 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((TopSet‘𝑅) ↾t (Base‘𝑅)) = (TopOpen‘𝑅)) |
| 5 | mgpbas.1 | . . . . . 6 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 6 | 5 | mgptsetg 13632 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑅) = (TopSet‘𝑀)) |
| 7 | 5, 2 | mgpbasg 13630 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑀)) |
| 8 | 6, 7 | oveq12d 5961 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((TopSet‘𝑅) ↾t (Base‘𝑅)) = ((TopSet‘𝑀) ↾t (Base‘𝑀))) |
| 9 | 4, 8 | eqtr3d 2239 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (TopOpen‘𝑅) = ((TopSet‘𝑀) ↾t (Base‘𝑀))) |
| 10 | 1, 9 | eqtrid 2249 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝐽 = ((TopSet‘𝑀) ↾t (Base‘𝑀))) |
| 11 | fnmgp 13626 | . . . . 5 ⊢ mulGrp Fn V | |
| 12 | elex 2782 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 13 | funfvex 5592 | . . . . . 6 ⊢ ((Fun mulGrp ∧ 𝑅 ∈ dom mulGrp) → (mulGrp‘𝑅) ∈ V) | |
| 14 | 13 | funfni 5375 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp‘𝑅) ∈ V) |
| 15 | 11, 12, 14 | sylancr 414 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (mulGrp‘𝑅) ∈ V) |
| 16 | 5, 15 | eqeltrid 2291 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑀 ∈ V) |
| 17 | eqid 2204 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 18 | eqid 2204 | . . . 4 ⊢ (TopSet‘𝑀) = (TopSet‘𝑀) | |
| 19 | 17, 18 | topnvalg 13025 | . . 3 ⊢ (𝑀 ∈ V → ((TopSet‘𝑀) ↾t (Base‘𝑀)) = (TopOpen‘𝑀)) |
| 20 | 16, 19 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((TopSet‘𝑀) ↾t (Base‘𝑀)) = (TopOpen‘𝑀)) |
| 21 | 10, 20 | eqtrd 2237 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopOpen‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 Fn wfn 5265 ‘cfv 5270 (class class class)co 5943 Basecbs 12774 TopSetcts 12857 ↾t crest 13013 TopOpenctopn 13014 mulGrpcmgp 13624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-plusg 12864 df-mulr 12865 df-tset 12870 df-rest 13015 df-topn 13016 df-mgp 13625 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |