| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgptopng | GIF version | ||
| Description: Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgptopn.2 | ⊢ 𝐽 = (TopOpen‘𝑅) |
| Ref | Expression |
|---|---|
| mgptopng | ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopOpen‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgptopn.2 | . . 3 ⊢ 𝐽 = (TopOpen‘𝑅) | |
| 2 | eqid 2206 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2206 | . . . . 5 ⊢ (TopSet‘𝑅) = (TopSet‘𝑅) | |
| 4 | 2, 3 | topnvalg 13158 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((TopSet‘𝑅) ↾t (Base‘𝑅)) = (TopOpen‘𝑅)) |
| 5 | mgpbas.1 | . . . . . 6 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 6 | 5 | mgptsetg 13765 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑅) = (TopSet‘𝑀)) |
| 7 | 5, 2 | mgpbasg 13763 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑀)) |
| 8 | 6, 7 | oveq12d 5975 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((TopSet‘𝑅) ↾t (Base‘𝑅)) = ((TopSet‘𝑀) ↾t (Base‘𝑀))) |
| 9 | 4, 8 | eqtr3d 2241 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (TopOpen‘𝑅) = ((TopSet‘𝑀) ↾t (Base‘𝑀))) |
| 10 | 1, 9 | eqtrid 2251 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝐽 = ((TopSet‘𝑀) ↾t (Base‘𝑀))) |
| 11 | fnmgp 13759 | . . . . 5 ⊢ mulGrp Fn V | |
| 12 | elex 2785 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 13 | funfvex 5606 | . . . . . 6 ⊢ ((Fun mulGrp ∧ 𝑅 ∈ dom mulGrp) → (mulGrp‘𝑅) ∈ V) | |
| 14 | 13 | funfni 5385 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp‘𝑅) ∈ V) |
| 15 | 11, 12, 14 | sylancr 414 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (mulGrp‘𝑅) ∈ V) |
| 16 | 5, 15 | eqeltrid 2293 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑀 ∈ V) |
| 17 | eqid 2206 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 18 | eqid 2206 | . . . 4 ⊢ (TopSet‘𝑀) = (TopSet‘𝑀) | |
| 19 | 17, 18 | topnvalg 13158 | . . 3 ⊢ (𝑀 ∈ V → ((TopSet‘𝑀) ↾t (Base‘𝑀)) = (TopOpen‘𝑀)) |
| 20 | 16, 19 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((TopSet‘𝑀) ↾t (Base‘𝑀)) = (TopOpen‘𝑀)) |
| 21 | 10, 20 | eqtrd 2239 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopOpen‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 Fn wfn 5275 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 TopSetcts 12990 ↾t crest 13146 TopOpenctopn 13147 mulGrpcmgp 13757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-plusg 12997 df-mulr 12998 df-tset 13003 df-rest 13148 df-topn 13149 df-mgp 13758 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |