![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgptopng | GIF version |
Description: Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgptopn.2 | ⊢ 𝐽 = (TopOpen‘𝑅) |
Ref | Expression |
---|---|
mgptopng | ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopOpen‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgptopn.2 | . . 3 ⊢ 𝐽 = (TopOpen‘𝑅) | |
2 | eqid 2189 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2189 | . . . . 5 ⊢ (TopSet‘𝑅) = (TopSet‘𝑅) | |
4 | 2, 3 | topnvalg 12759 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((TopSet‘𝑅) ↾t (Base‘𝑅)) = (TopOpen‘𝑅)) |
5 | mgpbas.1 | . . . . . 6 ⊢ 𝑀 = (mulGrp‘𝑅) | |
6 | 5 | mgptsetg 13299 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (TopSet‘𝑅) = (TopSet‘𝑀)) |
7 | 5, 2 | mgpbasg 13297 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑀)) |
8 | 6, 7 | oveq12d 5915 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((TopSet‘𝑅) ↾t (Base‘𝑅)) = ((TopSet‘𝑀) ↾t (Base‘𝑀))) |
9 | 4, 8 | eqtr3d 2224 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (TopOpen‘𝑅) = ((TopSet‘𝑀) ↾t (Base‘𝑀))) |
10 | 1, 9 | eqtrid 2234 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝐽 = ((TopSet‘𝑀) ↾t (Base‘𝑀))) |
11 | fnmgp 13293 | . . . . 5 ⊢ mulGrp Fn V | |
12 | elex 2763 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
13 | funfvex 5551 | . . . . . 6 ⊢ ((Fun mulGrp ∧ 𝑅 ∈ dom mulGrp) → (mulGrp‘𝑅) ∈ V) | |
14 | 13 | funfni 5335 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp‘𝑅) ∈ V) |
15 | 11, 12, 14 | sylancr 414 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (mulGrp‘𝑅) ∈ V) |
16 | 5, 15 | eqeltrid 2276 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑀 ∈ V) |
17 | eqid 2189 | . . . 4 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
18 | eqid 2189 | . . . 4 ⊢ (TopSet‘𝑀) = (TopSet‘𝑀) | |
19 | 17, 18 | topnvalg 12759 | . . 3 ⊢ (𝑀 ∈ V → ((TopSet‘𝑀) ↾t (Base‘𝑀)) = (TopOpen‘𝑀)) |
20 | 16, 19 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((TopSet‘𝑀) ↾t (Base‘𝑀)) = (TopOpen‘𝑀)) |
21 | 10, 20 | eqtrd 2222 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐽 = (TopOpen‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 Vcvv 2752 Fn wfn 5230 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 TopSetcts 12598 ↾t crest 12747 TopOpenctopn 12748 mulGrpcmgp 13291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-pre-ltirr 7954 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-pnf 8025 df-mnf 8026 df-ltxr 8028 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-6 9013 df-7 9014 df-8 9015 df-9 9016 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-plusg 12605 df-mulr 12606 df-tset 12611 df-rest 12749 df-topn 12750 df-mgp 13292 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |