ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnbl0 Unicode version

Theorem cnbl0 14037
Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1  |-  D  =  ( abs  o.  -  )
Assertion
Ref Expression
cnbl0  |-  ( R  e.  RR*  ->  ( `' abs " ( 0 [,) R ) )  =  ( 0 (
ball `  D ) R ) )

Proof of Theorem cnbl0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-3an 980 . . . . . 6  |-  ( ( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
)  /\  ( abs `  x )  <  R
)  <->  ( ( ( abs `  x )  e.  RR  /\  0  <_  ( abs `  x
) )  /\  ( abs `  x )  < 
R ) )
2 abscl 11060 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
3 absge0 11069 . . . . . . . . 9  |-  ( x  e.  CC  ->  0  <_  ( abs `  x
) )
42, 3jca 306 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) ) )
54adantl 277 . . . . . . 7  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) ) )
65biantrurd 305 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  <  R  <->  ( (
( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) )  /\  ( abs `  x )  < 
R ) ) )
71, 6bitr4id 199 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
)  /\  ( abs `  x )  <  R
)  <->  ( abs `  x
)  <  R )
)
8 0re 7957 . . . . . 6  |-  0  e.  RR
9 simpl 109 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  R  e.  RR* )
10 elico2 9937 . . . . . 6  |-  ( ( 0  e.  RR  /\  R  e.  RR* )  -> 
( ( abs `  x
)  e.  ( 0 [,) R )  <->  ( ( abs `  x )  e.  RR  /\  0  <_ 
( abs `  x
)  /\  ( abs `  x )  <  R
) ) )
118, 9, 10sylancr 414 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  ( 0 [,) R )  <->  ( ( abs `  x )  e.  RR  /\  0  <_ 
( abs `  x
)  /\  ( abs `  x )  <  R
) ) )
12 0cn 7949 . . . . . . . . 9  |-  0  e.  CC
13 cnblcld.1 . . . . . . . . . . 11  |-  D  =  ( abs  o.  -  )
1413cnmetdval 14032 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 D x )  =  ( abs `  ( 0  -  x
) ) )
15 abssub 11110 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( abs `  (
0  -  x ) )  =  ( abs `  ( x  -  0 ) ) )
1614, 15eqtrd 2210 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 D x )  =  ( abs `  ( x  -  0 ) ) )
1712, 16mpan 424 . . . . . . . 8  |-  ( x  e.  CC  ->  (
0 D x )  =  ( abs `  (
x  -  0 ) ) )
18 subid1 8177 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
x  -  0 )  =  x )
1918fveq2d 5520 . . . . . . . 8  |-  ( x  e.  CC  ->  ( abs `  ( x  - 
0 ) )  =  ( abs `  x
) )
2017, 19eqtrd 2210 . . . . . . 7  |-  ( x  e.  CC  ->  (
0 D x )  =  ( abs `  x
) )
2120adantl 277 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
0 D x )  =  ( abs `  x
) )
2221breq1d 4014 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( 0 D x )  <  R  <->  ( abs `  x )  <  R
) )
237, 11, 223bitr4d 220 . . . 4  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  ( 0 [,) R )  <->  ( 0 D x )  < 
R ) )
2423pm5.32da 452 . . 3  |-  ( R  e.  RR*  ->  ( ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,) R ) )  <->  ( x  e.  CC  /\  ( 0 D x )  < 
R ) ) )
25 absf 11119 . . . . 5  |-  abs : CC
--> RR
26 ffn 5366 . . . . 5  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
2725, 26ax-mp 5 . . . 4  |-  abs  Fn  CC
28 elpreima 5636 . . . 4  |-  ( abs 
Fn  CC  ->  ( x  e.  ( `' abs " ( 0 [,) R
) )  <->  ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,) R ) ) ) )
2927, 28mp1i 10 . . 3  |-  ( R  e.  RR*  ->  ( x  e.  ( `' abs " ( 0 [,) R
) )  <->  ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,) R ) ) ) )
30 cnxmet 14034 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
3113, 30eqeltri 2250 . . . 4  |-  D  e.  ( *Met `  CC )
32 elbl 13894 . . . 4  |-  ( ( D  e.  ( *Met `  CC )  /\  0  e.  CC  /\  R  e.  RR* )  ->  ( x  e.  ( 0 ( ball `  D
) R )  <->  ( x  e.  CC  /\  ( 0 D x )  < 
R ) ) )
3331, 12, 32mp3an12 1327 . . 3  |-  ( R  e.  RR*  ->  ( x  e.  ( 0 (
ball `  D ) R )  <->  ( x  e.  CC  /\  ( 0 D x )  < 
R ) ) )
3424, 29, 333bitr4d 220 . 2  |-  ( R  e.  RR*  ->  ( x  e.  ( `' abs " ( 0 [,) R
) )  <->  x  e.  ( 0 ( ball `  D ) R ) ) )
3534eqrdv 2175 1  |-  ( R  e.  RR*  ->  ( `' abs " ( 0 [,) R ) )  =  ( 0 (
ball `  D ) R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4004   `'ccnv 4626   "cima 4630    o. ccom 4631    Fn wfn 5212   -->wf 5213   ` cfv 5217  (class class class)co 5875   CCcc 7809   RRcr 7810   0cc0 7811   RR*cxr 7991    < clt 7992    <_ cle 7993    - cmin 8128   [,)cico 9890   abscabs 11006   *Metcxmet 13443   ballcbl 13445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-map 6650  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-rp 9654  df-xadd 9773  df-ico 9894  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-psmet 13450  df-xmet 13451  df-met 13452  df-bl 13453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator