ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnbl0 Unicode version

Theorem cnbl0 13328
Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1  |-  D  =  ( abs  o.  -  )
Assertion
Ref Expression
cnbl0  |-  ( R  e.  RR*  ->  ( `' abs " ( 0 [,) R ) )  =  ( 0 (
ball `  D ) R ) )

Proof of Theorem cnbl0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-3an 975 . . . . . 6  |-  ( ( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
)  /\  ( abs `  x )  <  R
)  <->  ( ( ( abs `  x )  e.  RR  /\  0  <_  ( abs `  x
) )  /\  ( abs `  x )  < 
R ) )
2 abscl 11015 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
3 absge0 11024 . . . . . . . . 9  |-  ( x  e.  CC  ->  0  <_  ( abs `  x
) )
42, 3jca 304 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) ) )
54adantl 275 . . . . . . 7  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) ) )
65biantrurd 303 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  <  R  <->  ( (
( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) )  /\  ( abs `  x )  < 
R ) ) )
71, 6bitr4id 198 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
)  /\  ( abs `  x )  <  R
)  <->  ( abs `  x
)  <  R )
)
8 0re 7920 . . . . . 6  |-  0  e.  RR
9 simpl 108 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  R  e.  RR* )
10 elico2 9894 . . . . . 6  |-  ( ( 0  e.  RR  /\  R  e.  RR* )  -> 
( ( abs `  x
)  e.  ( 0 [,) R )  <->  ( ( abs `  x )  e.  RR  /\  0  <_ 
( abs `  x
)  /\  ( abs `  x )  <  R
) ) )
118, 9, 10sylancr 412 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  ( 0 [,) R )  <->  ( ( abs `  x )  e.  RR  /\  0  <_ 
( abs `  x
)  /\  ( abs `  x )  <  R
) ) )
12 0cn 7912 . . . . . . . . 9  |-  0  e.  CC
13 cnblcld.1 . . . . . . . . . . 11  |-  D  =  ( abs  o.  -  )
1413cnmetdval 13323 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 D x )  =  ( abs `  ( 0  -  x
) ) )
15 abssub 11065 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( abs `  (
0  -  x ) )  =  ( abs `  ( x  -  0 ) ) )
1614, 15eqtrd 2203 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 D x )  =  ( abs `  ( x  -  0 ) ) )
1712, 16mpan 422 . . . . . . . 8  |-  ( x  e.  CC  ->  (
0 D x )  =  ( abs `  (
x  -  0 ) ) )
18 subid1 8139 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
x  -  0 )  =  x )
1918fveq2d 5500 . . . . . . . 8  |-  ( x  e.  CC  ->  ( abs `  ( x  - 
0 ) )  =  ( abs `  x
) )
2017, 19eqtrd 2203 . . . . . . 7  |-  ( x  e.  CC  ->  (
0 D x )  =  ( abs `  x
) )
2120adantl 275 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
0 D x )  =  ( abs `  x
) )
2221breq1d 3999 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( 0 D x )  <  R  <->  ( abs `  x )  <  R
) )
237, 11, 223bitr4d 219 . . . 4  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  ( 0 [,) R )  <->  ( 0 D x )  < 
R ) )
2423pm5.32da 449 . . 3  |-  ( R  e.  RR*  ->  ( ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,) R ) )  <->  ( x  e.  CC  /\  ( 0 D x )  < 
R ) ) )
25 absf 11074 . . . . 5  |-  abs : CC
--> RR
26 ffn 5347 . . . . 5  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
2725, 26ax-mp 5 . . . 4  |-  abs  Fn  CC
28 elpreima 5615 . . . 4  |-  ( abs 
Fn  CC  ->  ( x  e.  ( `' abs " ( 0 [,) R
) )  <->  ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,) R ) ) ) )
2927, 28mp1i 10 . . 3  |-  ( R  e.  RR*  ->  ( x  e.  ( `' abs " ( 0 [,) R
) )  <->  ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,) R ) ) ) )
30 cnxmet 13325 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
3113, 30eqeltri 2243 . . . 4  |-  D  e.  ( *Met `  CC )
32 elbl 13185 . . . 4  |-  ( ( D  e.  ( *Met `  CC )  /\  0  e.  CC  /\  R  e.  RR* )  ->  ( x  e.  ( 0 ( ball `  D
) R )  <->  ( x  e.  CC  /\  ( 0 D x )  < 
R ) ) )
3331, 12, 32mp3an12 1322 . . 3  |-  ( R  e.  RR*  ->  ( x  e.  ( 0 (
ball `  D ) R )  <->  ( x  e.  CC  /\  ( 0 D x )  < 
R ) ) )
3424, 29, 333bitr4d 219 . 2  |-  ( R  e.  RR*  ->  ( x  e.  ( `' abs " ( 0 [,) R
) )  <->  x  e.  ( 0 ( ball `  D ) R ) ) )
3534eqrdv 2168 1  |-  ( R  e.  RR*  ->  ( `' abs " ( 0 [,) R ) )  =  ( 0 (
ball `  D ) R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989   `'ccnv 4610   "cima 4614    o. ccom 4615    Fn wfn 5193   -->wf 5194   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   RR*cxr 7953    < clt 7954    <_ cle 7955    - cmin 8090   [,)cico 9847   abscabs 10961   *Metcxmet 12774   ballcbl 12776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-xadd 9730  df-ico 9851  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator