ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnbl0 Unicode version

Theorem cnbl0 15039
Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1  |-  D  =  ( abs  o.  -  )
Assertion
Ref Expression
cnbl0  |-  ( R  e.  RR*  ->  ( `' abs " ( 0 [,) R ) )  =  ( 0 (
ball `  D ) R ) )

Proof of Theorem cnbl0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-3an 983 . . . . . 6  |-  ( ( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
)  /\  ( abs `  x )  <  R
)  <->  ( ( ( abs `  x )  e.  RR  /\  0  <_  ( abs `  x
) )  /\  ( abs `  x )  < 
R ) )
2 abscl 11395 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
3 absge0 11404 . . . . . . . . 9  |-  ( x  e.  CC  ->  0  <_  ( abs `  x
) )
42, 3jca 306 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) ) )
54adantl 277 . . . . . . 7  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) ) )
65biantrurd 305 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  <  R  <->  ( (
( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) )  /\  ( abs `  x )  < 
R ) ) )
71, 6bitr4id 199 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
)  /\  ( abs `  x )  <  R
)  <->  ( abs `  x
)  <  R )
)
8 0re 8074 . . . . . 6  |-  0  e.  RR
9 simpl 109 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  R  e.  RR* )
10 elico2 10061 . . . . . 6  |-  ( ( 0  e.  RR  /\  R  e.  RR* )  -> 
( ( abs `  x
)  e.  ( 0 [,) R )  <->  ( ( abs `  x )  e.  RR  /\  0  <_ 
( abs `  x
)  /\  ( abs `  x )  <  R
) ) )
118, 9, 10sylancr 414 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  ( 0 [,) R )  <->  ( ( abs `  x )  e.  RR  /\  0  <_ 
( abs `  x
)  /\  ( abs `  x )  <  R
) ) )
12 0cn 8066 . . . . . . . . 9  |-  0  e.  CC
13 cnblcld.1 . . . . . . . . . . 11  |-  D  =  ( abs  o.  -  )
1413cnmetdval 15034 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 D x )  =  ( abs `  ( 0  -  x
) ) )
15 abssub 11445 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( abs `  (
0  -  x ) )  =  ( abs `  ( x  -  0 ) ) )
1614, 15eqtrd 2238 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 D x )  =  ( abs `  ( x  -  0 ) ) )
1712, 16mpan 424 . . . . . . . 8  |-  ( x  e.  CC  ->  (
0 D x )  =  ( abs `  (
x  -  0 ) ) )
18 subid1 8294 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
x  -  0 )  =  x )
1918fveq2d 5582 . . . . . . . 8  |-  ( x  e.  CC  ->  ( abs `  ( x  - 
0 ) )  =  ( abs `  x
) )
2017, 19eqtrd 2238 . . . . . . 7  |-  ( x  e.  CC  ->  (
0 D x )  =  ( abs `  x
) )
2120adantl 277 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
0 D x )  =  ( abs `  x
) )
2221breq1d 4055 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( 0 D x )  <  R  <->  ( abs `  x )  <  R
) )
237, 11, 223bitr4d 220 . . . 4  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  ( 0 [,) R )  <->  ( 0 D x )  < 
R ) )
2423pm5.32da 452 . . 3  |-  ( R  e.  RR*  ->  ( ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,) R ) )  <->  ( x  e.  CC  /\  ( 0 D x )  < 
R ) ) )
25 absf 11454 . . . . 5  |-  abs : CC
--> RR
26 ffn 5427 . . . . 5  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
2725, 26ax-mp 5 . . . 4  |-  abs  Fn  CC
28 elpreima 5701 . . . 4  |-  ( abs 
Fn  CC  ->  ( x  e.  ( `' abs " ( 0 [,) R
) )  <->  ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,) R ) ) ) )
2927, 28mp1i 10 . . 3  |-  ( R  e.  RR*  ->  ( x  e.  ( `' abs " ( 0 [,) R
) )  <->  ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,) R ) ) ) )
30 cnxmet 15036 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
3113, 30eqeltri 2278 . . . 4  |-  D  e.  ( *Met `  CC )
32 elbl 14896 . . . 4  |-  ( ( D  e.  ( *Met `  CC )  /\  0  e.  CC  /\  R  e.  RR* )  ->  ( x  e.  ( 0 ( ball `  D
) R )  <->  ( x  e.  CC  /\  ( 0 D x )  < 
R ) ) )
3331, 12, 32mp3an12 1340 . . 3  |-  ( R  e.  RR*  ->  ( x  e.  ( 0 (
ball `  D ) R )  <->  ( x  e.  CC  /\  ( 0 D x )  < 
R ) ) )
3424, 29, 333bitr4d 220 . 2  |-  ( R  e.  RR*  ->  ( x  e.  ( `' abs " ( 0 [,) R
) )  <->  x  e.  ( 0 ( ball `  D ) R ) ) )
3534eqrdv 2203 1  |-  ( R  e.  RR*  ->  ( `' abs " ( 0 [,) R ) )  =  ( 0 (
ball `  D ) R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4045   `'ccnv 4675   "cima 4679    o. ccom 4680    Fn wfn 5267   -->wf 5268   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927   RR*cxr 8108    < clt 8109    <_ cle 8110    - cmin 8245   [,)cico 10014   abscabs 11341   *Metcxmet 14331   ballcbl 14333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-map 6739  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-rp 9778  df-xadd 9897  df-ico 10018  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-psmet 14338  df-xmet 14339  df-met 14340  df-bl 14341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator