ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnbl0 Unicode version

Theorem cnbl0 13701
Description: Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
cnblcld.1  |-  D  =  ( abs  o.  -  )
Assertion
Ref Expression
cnbl0  |-  ( R  e.  RR*  ->  ( `' abs " ( 0 [,) R ) )  =  ( 0 (
ball `  D ) R ) )

Proof of Theorem cnbl0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-3an 980 . . . . . 6  |-  ( ( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
)  /\  ( abs `  x )  <  R
)  <->  ( ( ( abs `  x )  e.  RR  /\  0  <_  ( abs `  x
) )  /\  ( abs `  x )  < 
R ) )
2 abscl 11044 . . . . . . . . 9  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
3 absge0 11053 . . . . . . . . 9  |-  ( x  e.  CC  ->  0  <_  ( abs `  x
) )
42, 3jca 306 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) ) )
54adantl 277 . . . . . . 7  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) ) )
65biantrurd 305 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  <  R  <->  ( (
( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
) )  /\  ( abs `  x )  < 
R ) ) )
71, 6bitr4id 199 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( ( abs `  x
)  e.  RR  /\  0  <_  ( abs `  x
)  /\  ( abs `  x )  <  R
)  <->  ( abs `  x
)  <  R )
)
8 0re 7948 . . . . . 6  |-  0  e.  RR
9 simpl 109 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  R  e.  RR* )
10 elico2 9924 . . . . . 6  |-  ( ( 0  e.  RR  /\  R  e.  RR* )  -> 
( ( abs `  x
)  e.  ( 0 [,) R )  <->  ( ( abs `  x )  e.  RR  /\  0  <_ 
( abs `  x
)  /\  ( abs `  x )  <  R
) ) )
118, 9, 10sylancr 414 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  ( 0 [,) R )  <->  ( ( abs `  x )  e.  RR  /\  0  <_ 
( abs `  x
)  /\  ( abs `  x )  <  R
) ) )
12 0cn 7940 . . . . . . . . 9  |-  0  e.  CC
13 cnblcld.1 . . . . . . . . . . 11  |-  D  =  ( abs  o.  -  )
1413cnmetdval 13696 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 D x )  =  ( abs `  ( 0  -  x
) ) )
15 abssub 11094 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( abs `  (
0  -  x ) )  =  ( abs `  ( x  -  0 ) ) )
1614, 15eqtrd 2210 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 D x )  =  ( abs `  ( x  -  0 ) ) )
1712, 16mpan 424 . . . . . . . 8  |-  ( x  e.  CC  ->  (
0 D x )  =  ( abs `  (
x  -  0 ) ) )
18 subid1 8167 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
x  -  0 )  =  x )
1918fveq2d 5515 . . . . . . . 8  |-  ( x  e.  CC  ->  ( abs `  ( x  - 
0 ) )  =  ( abs `  x
) )
2017, 19eqtrd 2210 . . . . . . 7  |-  ( x  e.  CC  ->  (
0 D x )  =  ( abs `  x
) )
2120adantl 277 . . . . . 6  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
0 D x )  =  ( abs `  x
) )
2221breq1d 4010 . . . . 5  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( 0 D x )  <  R  <->  ( abs `  x )  <  R
) )
237, 11, 223bitr4d 220 . . . 4  |-  ( ( R  e.  RR*  /\  x  e.  CC )  ->  (
( abs `  x
)  e.  ( 0 [,) R )  <->  ( 0 D x )  < 
R ) )
2423pm5.32da 452 . . 3  |-  ( R  e.  RR*  ->  ( ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,) R ) )  <->  ( x  e.  CC  /\  ( 0 D x )  < 
R ) ) )
25 absf 11103 . . . . 5  |-  abs : CC
--> RR
26 ffn 5361 . . . . 5  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
2725, 26ax-mp 5 . . . 4  |-  abs  Fn  CC
28 elpreima 5631 . . . 4  |-  ( abs 
Fn  CC  ->  ( x  e.  ( `' abs " ( 0 [,) R
) )  <->  ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,) R ) ) ) )
2927, 28mp1i 10 . . 3  |-  ( R  e.  RR*  ->  ( x  e.  ( `' abs " ( 0 [,) R
) )  <->  ( x  e.  CC  /\  ( abs `  x )  e.  ( 0 [,) R ) ) ) )
30 cnxmet 13698 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
3113, 30eqeltri 2250 . . . 4  |-  D  e.  ( *Met `  CC )
32 elbl 13558 . . . 4  |-  ( ( D  e.  ( *Met `  CC )  /\  0  e.  CC  /\  R  e.  RR* )  ->  ( x  e.  ( 0 ( ball `  D
) R )  <->  ( x  e.  CC  /\  ( 0 D x )  < 
R ) ) )
3331, 12, 32mp3an12 1327 . . 3  |-  ( R  e.  RR*  ->  ( x  e.  ( 0 (
ball `  D ) R )  <->  ( x  e.  CC  /\  ( 0 D x )  < 
R ) ) )
3424, 29, 333bitr4d 220 . 2  |-  ( R  e.  RR*  ->  ( x  e.  ( `' abs " ( 0 [,) R
) )  <->  x  e.  ( 0 ( ball `  D ) R ) ) )
3534eqrdv 2175 1  |-  ( R  e.  RR*  ->  ( `' abs " ( 0 [,) R ) )  =  ( 0 (
ball `  D ) R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4000   `'ccnv 4622   "cima 4626    o. ccom 4627    Fn wfn 5207   -->wf 5208   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   RR*cxr 7981    < clt 7982    <_ cle 7983    - cmin 8118   [,)cico 9877   abscabs 10990   *Metcxmet 13147   ballcbl 13149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-xadd 9760  df-ico 9881  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator